zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Approximate eigenvalue and eigenfunction solutions for the generalized Hulthén potential with any angular momentum. (English) Zbl 1132.81352
Summary: An approximate solution of the Schrödinger equation for the generalized Hulthén potential with non-zero angular quantum number is solved. The bound state energy eigenvalues and eigenfunctions are obtained in terms of Jacobi polynomials. The Nikiforov-Uvarov method is used in the computations. We have considered the time-independent Schrödinger equation with the associated form of Hulthén potential which simulate the effect of the centrifugal barrier for any l-state. The energy levels of the used Hulthén potential gives satisfactory values for the non-zero angular momentum as the generalized Hulthén effective potential.
81V55Applications of quantum theory to molecular physics
81Q05Closed and approximate solutions to quantum-mechanical equations
[1]Hulthén L., Ark. Mat. Astron. Fys. 28 A (1942) 5; ibid., Ark. Mat. Astron. Fys. 29 B (1942) 1.
[2]Eckart C.,(1930). Phys. Rev 35: 1303 · doi:10.1103/PhysRev.35.1303
[3]Varshni Y.P., (1990). Phys. Rev A 41: 4682 · doi:10.1103/PhysRevA.41.4682
[4]Lam C.S., Varshni Y.P., (1971). Phys. Rev. A 4: 1875 · doi:10.1103/PhysRevA.4.1875
[5]Flügge S., (1974). Practical Quantum Mechanics. Springer-Verlag, Berlin
[6]C.Lai S., Lim W.C., (1980). Phys. Lett. A 78: 335 · doi:10.1016/0375-9601(80)90388-6
[7]Dutt R., Mukherji U., (1982). Phys. Lett, A 90: 395 · doi:10.1016/0375-9601(82)90793-9
[8]Patil S.H., (1984). J. Phys. A 17: 575 · doi:10.1088/0305-4470/17/3/019
[9]Popov V.S., Weiberg V.M., (1985). Phys. Lett. A 107: 371 · doi:10.1016/0375-9601(85)90692-9
[10]Roy B., Roychoudhury R., (1987). J. Phys. A 20: 3051 · doi:10.1088/0305-4470/20/10/048
[11]Tang A.Z., Chan F.T., (1987). Phys. Rev. A 35: 911 · doi:10.1103/PhysRevA.35.911
[12]Lai C.H., (1987). J. Math. Phys 28: 1801 · Zbl 0625.34017 · doi:10.1063/1.527439
[13]Matthys P., De H., (1988). Phys. Rev. A 38: 1168 · doi:10.1103/PhysRevA.38.1168
[14]Laha U., Bhattacharyya C., Roy K., Talukdar B., (1988). Phys. Rev. C 38: 558 · doi:10.1103/PhysRevC.38.558
[15]Talukdar B., Das U., Bhattacharyya C., Bera P.K., (1992). J. Phys. A 25: 4073 · Zbl 0757.34070 · doi:10.1088/0305-4470/25/14/021
[16]Filho E.D., Ricotta R.M., (1995). Mod. Phys. Lett. A 10: 1613 · doi:10.1142/S0217732395001733
[17]Cooper F., Khare A., Sukhatme U., (1995). Phys. Rep 251: 267 · doi:10.1016/0370-1573(94)00080-M
[18]Gönül B., Özer O., Cançelik Y., Koçak M., (2000). Phys. Lett. A 275: 238 · Zbl 1115.81349 · doi:10.1016/S0375-9601(00)00590-9
[19]Nikiforov A.F., Uvarov V.B., (1988). Special Functions of Mathematical Physics. Birkhauser, Basel
[20]Yeşiltaş Ö., Şimşek M., Sever R., Tezcan C., (2003). Physica Scripta 67: 472 · Zbl 1045.35060 · doi:10.1238/Physica.Regular.067a00472
[21]Berkdemir C., Berkdemir A., Sever R., Phys. Rev. C 72 (2005) 027001; Berkdemir A., Berkdemir C., R. Sever [arXiv:quant-ph/0410153].
[22]Berkdemir C., Han J., Chem. Phys. Lett. 409 (2005) 203; Berkdemir C., Berkdemir A., Han J., Chem. Phys. Letters 417 (2006) 326
[23]M. Aktaş and Sever R., J. Math. Chem. 37 (2005) 139; Faridfathi G., Sever R., Metin Aktaş, J. Math. Chem. 38 (2005) 533
[24]Greene R.L., Aldrich C., (1976). Phys. Rev. A 14: 2363 · doi:10.1103/PhysRevA.14.2363
[25]Şimşek M., Eğrifes H., (2004). J. Phys. A. Math. Gen 37: 4379 · Zbl 1053.81023 · doi:10.1088/0305-4470/37/15/007
[26]Gendenshtein L., (1983). JETP Lett 38: 356
[27]Filho E.D., Ricotta R.M., (1995). Mod. Phys. Lett. A10: 1613 · doi:10.1142/S0217732395001733
[28]Sezgo G., (1939). Orthogonal Polynomials. American Mathematical Society, New York
[29]Ikhdair S.M., Sever R., To appear in Phys. Rev. C.
[30]Aktaş M., Sever R., (2004). J. Molec. Struc 710: 219