zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Switching LPV control designs using multiple parameter-dependent Lyapunov functions. (English) Zbl 1133.93370
Summary: We study the switching control of linear parameter-varying (LPV) systems using multiple parameter-dependent Lyapunov functions to improve performance and enhance control design flexibility. A family of LPV controllers is designed, each suitable for a specific parameter subregion. They are switched so that the closed-loop system remains stable and its performance is optimized. Two switching logics, hysteresis switching and switching with average dwell time, are examined. The control synthesis conditions for both switching logics are formulated as matrix optimization problems, which are generally non-convex but can be convexified under some simplifying assumptions. The hysteresis switching LPV control scheme is then applied to an active magnetic bearing problem.
MSC:
93D30Scalar and vector Lyapunov functions
15A39Linear inequalities of matrices