zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The strong conical hull intersection property for convex programming. (English) Zbl 1134.90462

Summary: The strong conical hull intersection property (CHIP) is a geometric property of a collection of finitely many closed convex intersecting sets. This basic property, which was introduced by Deutsch et al. in 1999, is one of the central ingredients in the study of constrained interpolation and best approximation. In this paper we establish that the strong CHIP of intersecting sets of constraints is the key characterizing property for optimality and strong duality of convex programming problems. We first show that a sharpened strong CHIP is necessary and sufficient for a complete Lagrange multiplier characterization of optimality for the convex programming model problem

(P f )min{f(x)xC,-g(x)S}

where C is a closed convex subset of a Banach space X, S is a closed convex cone which does not necessarily have non-empty interior, Y is a Banach space, f:X is a continuous convex function and g:XY is a continuous S-convex function. We also show that the strong CHIP completely characterizes the strong duality for partially finite convex programs, where Y is finite dimensional and g(x)=-Ax+b and S is a polyhedral convex cone. Global sufficient conditions which are strictly weaker than the Slater type conditions are given for the strong CHIP and for the sharpened strong CHIP.

MSC:
90C25Convex programming
49J53Set-valued and variational analysis
References:
[1]Bauschke, H.H., Borwein, J.M., Li, W.: Strong conical hull intersection property, bounded linear regularity, Jameson’s property (G), and error bounds in convex optimization. Math. Progr. 86, 135–160 (1999) · Zbl 0998.90088 · doi:10.1007/s101070050083
[2]Borwein, J.M., Lewis, A.S.: Partially finite convex programming, part I: quasi–relative interiors and duality. Math. Progr. 57, 15–48 (1992) · Zbl 0778.90049 · doi:10.1007/BF01581072
[3]Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge, 2004
[4]Burachik, R.S., Jeyakumar, V.: A simple closure condition for the normal cone intersection formula. Proc. Amer. Math. Soc. 133 (6), 1741–1748 (2004) · Zbl 1065.46055 · doi:10.1090/S0002-9939-04-07844-X
[5]Burachik, R.S., Jeyakumar, V.: A new geometric condition for Fenchel’s duality in infinite dimensions. Math. Progr. Series B (to appear)
[6]Deutsch, F.: The role of conical hull intersection property in convex optimization and approximation. In: Approximation Theory IX, Chui C.K., Schumaker L.L. (eds.), Vanderbilt University Press, Nashville, TN 1998
[7]Deutsch, F.: Best approximation in inner product spaces. Springer-Verlag, New York, 2001
[8]Deutsch, F., Li, W., Swetits, J.: Fenchel duality and the strong conical hull intersection property. J. Optim. Theory Appl. 102, 681–695 (1999) · Zbl 0955.90148 · doi:10.1023/A:1022658308898
[9]Deutsch, F., Li, W., Ward, J.D.: Best approximation from the intersection of a closed convex set and a polyhedron in Hilbert space, weak Slater conditions, and the strong conical hull intersection property. SIAM J. Optim. 10, 252–268 (1999) · Zbl 0957.41025 · doi:10.1137/S1052623498337273
[10]Henrion, R., Jourani, A.: Subdifferential conditions for calmness of convex constraints. SIAM J. Optim. 13, 520–534 (2002) · Zbl 1028.49017 · doi:10.1137/S1052623401386071
[11]Henrion, R., Jourani, A., Outrata, J.: On the calmness of a class of multifunctions. SIAM J. Optim. 13 (2), 603–618 (2002) · Zbl 1028.49018 · doi:10.1137/S1052623401395553
[12]Hiriart-Urruty, J.B.: subdifferential calculus. In: Convex Analysis and Optimization, Aubin J.P., Vinter R.B. (eds.), Research Notes in Mathematics 57, Pitman, 1982, pp. 43–92
[13]Hiriart-Urruty, J.B., Lemarechal, C.: Convex Analysis and Minimization Algorithms. Springer-Verlag, Berlin, 1993
[14]Hiriart-Urruty, J.B., Phelps, R.R.: Subdifferential calculus using subdifferentials. J. Funct. Anal. 18, 154–166 (1993) · Zbl 0791.49017 · doi:10.1006/jfan.1993.1141
[15]Jeyakumar, V., Mohebi, H.: A global approach to nonlinearly constrained best approximation. Numer. Funct. Anal. and Optim. (to appear)
[16]Jeyakumar, V., Lee, G.M., Dinh, N.: New sequential Lagrange multiplier conditions characterizing optimality without constraint qualification for convex programs. SIAM J. Optim. 14 (2), 534–547 (2003) · Zbl 1046.90059 · doi:10.1137/S1052623402417699
[17]Jeyakumar, V., Song, W., Dinh, N., Lee, G.M.: Stable strong duality in convex optimization. Applied Mathematics Preprint, University of New South Wales, Sydney, 2005
[18]Jeyakumar, V., Rubinov, A.M., Glover, B.M., Ishizuka, Y.: Inequality systems and global optimization. J. Math. Anal. Appl. 202, 900–919 (1996) · Zbl 0856.90128 · doi:10.1006/jmaa.1996.0353
[19]Jeyakumar, V., Wolkowicz, H.: Generalizations of Slater’s constraint qualification for infinite convex programs. Math. Progr. 57 (1), 85–102 (1992) · Zbl 0771.90078 · doi:10.1007/BF01581074
[20]Li, C., Jin, X.: Nonlinearly constrained best approximation in Hilbert spaces: the strong CHIP, and the basic constraint qualification. SIAM J. Optim. 13 (1), 228–239 (2002) · Zbl 1012.41028 · doi:10.1137/S1052623401385600
[21]Li, C., Ng, K.F.: Constraint qualification, the strong CHIP and best approximation with convex constraints in Banach spaces. SIAM J. Optim. 14, 584–607 (2003) · Zbl 1046.90103 · doi:10.1137/S1052623402415846
[22]Ng, K.F., Song, W.: Fenchel duality in infinite-dimensional setting and its applications. Nonlinear Anal. 25, 845–858 (2003) · Zbl 1045.90080 · doi:10.1016/j.na.2003.07.008
[23]Wolkowicz, H., Saigal, R., Vandenberghe, L.: Handbook of semidefinite programming. Int Series Oper Res Management Sci 27, Kluwer Academic Publishers, Dordrecht, 2000
[24]Strömberg, T.: The operation of infimal convolution. Diss. Math. 352, 1–61 (1996)
[25]Tiba, D., Zalinescu, C.: On the necessity of some constraint qualification condition in convex programming. J. Convex Anal. 11 (1 & 2), 95–110 (2004)
[26]Zalinescu, C.: Convex analysis in general vector spaces. World Scientific, London, 2002