zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Hopf bifurcation and stability of periodic solutions in a delayed eco-epidemiological system. (English) Zbl 1134.92034
Summary: A delayed predator-prey epidemiological system with disease spreading in the predator population is considered. By regarding the delay as the bifurcation parameter and analyzing the characteristic equation of the linearized system of the original system at the positive equilibrium, the local asymptotic stability of the positive equilibrium and the existence of local Hopf bifurcations of periodic solutions are investigated. Moreover, we also study the direction of Hopf bifurcations and the stability of bifurcated periodic solutions; an explicit algorithm is given by applying the normal form theory and the center manifold reduction for functional differential equations. Finally, numerical simulations supporting the theoretical analysis are also included.
MSC:
92D30Epidemiology
92D40Ecology
34K18Bifurcation theory of functional differential equations
34K13Periodic solutions of functional differential equations
34K20Stability theory of functional-differential equations
34K60Qualitative investigation and simulation of models