zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Cryptanalysis of the public key encryption based on multiple chaotic systems. (English) Zbl 1134.94371
Summary: Recently, Ranjan Bose [Phys. Rev. Lett. 95, 098702 (2005)] proposed a novel public key encryption technique based on multiple chaotic systems. Unfortunately, K. Wang et al. [Security of public key encryption technique based on multiple chaotic system. Phys Lett A, in press] soon gave a successful attack on its special case based on Parseval’s theorem. In this letter, we give an improved example which can avoid the attack and point out that Wang cannot find the essential drawback of the technique. However, further experimental result shows Ranjan’s encryption technique is inefficient, and detailed theoretic analysis shows that the complexity to break the cryptosystem is overestimated.
MSC:
94A60Cryptography
37D99Dynamical systems with hyperbolic behavior
References:
[1]Lian, S. G.; Sun, J. S.; Wang, Z. Q.: A block cipher based on a suitable use of the chaotic standard map, Chaos, solitons & fractals 26, 117-129 (2005) · Zbl 1093.37504 · doi:10.1016/j.chaos.2004.11.096
[2]Lei, M.; Meng, G.; Feng, Z. J.: Security analysis of chaotic communication systems based on Volterra – Wiener – korenberg model, Chaos, solitons & fractals 28, 264-270 (2006) · Zbl 1094.94033 · doi:10.1016/j.chaos.2005.05.040
[3]Khan, K. K.; Zhang, J. S.; Tian, L.: Chaotic secure content-based hidden transmission of biometric templates, Chaos, solitons and fractals 32, 1749-1759 (2007)
[4]Baptista, M. S.: Cryptography with chaos, Phys lett A 240, 50-54 (1998) · Zbl 0936.94013 · doi:10.1016/S0375-9601(98)00086-3
[5]Li, S. J.; Chen, G. R.; Wong, K. W.: Baptista-type chaotic cryptosystems: problems and countermeasures, Phys lett A 332, 368-375 (2004) · Zbl 1123.81330 · doi:10.1016/j.physleta.2004.09.028
[6]Wong, K. W.: A combined cryptographic and hashing scheme, Phys lett A 307, 292-298 (2003) · Zbl 1008.94018 · doi:10.1016/S0375-9601(02)01770-X
[7]Álvarez, G.; Montoya, F.; Romera, M.: Cryptanalysis of dynamic look-up table based chaotic cryptosystems, Phys lett A 326, 211-218 (2004) · Zbl 1138.94346 · doi:10.1016/j.physleta.2004.04.018
[8]Chen, Y.; Liao, X. F.: Cryptanalysis on a modified Baptista-type cryptosystem with chaotic masking algorithm, Phys lett A 342, 389-396 (2005) · Zbl 1222.81149 · doi:10.1016/j.physleta.2005.05.048
[9]Tenny, R.; Tsimring, L.: Additive mixing modulation for public key encryption based on distributed dynamics, IEEE trans circuits syst I 52, 672-679 (2005)
[10]Kocarev L, Tasev Z. Public-key encryption based on Chebyshev maps. In: Proceedings of the 1-st international circuit and systems symposium, 2003, p. 25 – 8.
[11]Bergamo, P.; Arco, P.: Security of public key cryptosystems based on Chebyshev polynomials, IEEE trans circuits syst I 52, 1382-1393 (2005)
[12]Kocarev, L.; Sterjev, M.: Public key encryption scheme with chaos, Chaos 14, 1078-1081 (2004)
[13]Ruanjan, B.: Novel public key encryption technique based on multiple chaotic systems, Phys rev lett 26, 098702 (2005)
[14]Wang K, Pei W, Zhou L, et al. Security of public key encryption technique based on multiple chaotic system. Phys Lett A, in press.
[15]Li SJ, Mou XQ, Cai Y. In: Proceedings of progress in cryptology: INDOCRYPT 2001, Lecture notes in computer science, vol. 2247, 2001. p. 316 – 29.
[16]Menezes, A.; Van Oorschot, P.; Vanstone, S.: Handbook of applied cryptography, (1996)