zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Ternary derivations, stability and physical aspects. (English) Zbl 1135.39014
The author states some various definitions of ternary structures [cf. M. S. Moslehian, Bull. Belg. Math. Soc. 14, No. 1, 135–142 (2007; Zbl 1132.39026), M. Amyari and M. S. Moslehian [Lett. Math. Phys. 77, No. 1, 1–9 (2006; Zbl 1112.39021)] and proves the generalized Hyers-Ulam-Rassias stability of ternary derivations associated with the generalized Jensen functional equation by using a fixed point method [see also M.S. Moslehian and L. Székelyhidi, Result. Math. 49, No. 3–4, 289–300 (2006; Zbl 1114.39010)]. Some examples of physical applications of ternary structures are given as well.

39B82Stability, separation, extension, and related topics
39B52Functional equations for functions with more general domains and/or ranges
17A40Ternary compositions
17A36Automorphisms, derivations, other operators
[1]Abramov, V., Kerner, R., Le Roy, B.: Hypersymmetry: A Z 3-graded generalization of supersymmetry. J. Math. Phys. 38(3), 1650–1669 (1997) · Zbl 0872.58006 · doi:10.1063/1.531821
[2]Amyari, M., Moslehian, M.S.: Approximately ternary semigroup homomorphisms. Lett. Math. Phys. 77, 1–9 (2006) · Zbl 1112.39021 · doi:10.1007/s11005-005-0042-6
[3]Aoki, T.: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Jpn. 2, 64–66 (1950) · Zbl 0040.35501 · doi:10.2969/jmsj/00210064
[4]Baak, C., Moslehian, M.S.: Stability of J *-homomorphisms. Nonlinear Anal. TMA 63, 42–48 (2005) · Zbl 1085.39026 · doi:10.1016/j.na.2005.04.004
[5]Baak, C., Moslehian, M.S.: On the stability of θ-derivations on JB *-triples. Bull. Braz. Math. Soc. 38(1), 115–127 (2007) · Zbl 1127.39053 · doi:10.1007/s00574-007-0039-0
[6]Bars, I., Günaydin, M.: Construction of Lie algebras and Lie superalgebras from ternary algebras. J. Math. Phys. 20(9), 1977–1993 (1979) · Zbl 0412.17004 · doi:10.1063/1.524309
[7]Bazunova, N., Borowiec, A., Kerner, R.: Universal differential calculus on ternary algebras. Lett. Math. Phys. 67(3), 195–206 (2004) · Zbl 1062.46056 · doi:10.1023/B:MATH.0000035030.12929.cc
[8]Boo, D.-H., Oh, S.-Q., Park, C.-G., Park, J.-M.: Generalized Jensen’s equations in Banach modules over a C *-algebra and its unitary group. Taiwan. J. Math. 7(4), 641–655 (2003)
[9]Brzozowski, J.A.: Some applications of ternary algebras. In: Automata and Formal Languages, vol. VIII. Salgótarján (1996). Publ. Math. Debr. 54, Suppl. 583–599 (1999)
[10]Cădariu, L., Radu, V.: Fixed points and the stability of Jensen’s functional equation. J. Inequal. Pure Appl. Math. 4(1), 7 (2003) Article 4
[11]Cayley, A.: Cambr. Math. J. 4, 195–206 (1845)
[12]Czerwik, S.: Functional Equations and Inequalities in Several Variables. World Scientific, New Jersey (2002)
[13]Faĭziev, V., Sahoo, P.K.: On the stability of Jensen’s functional equation on groups. Proc. Indian Acad. Sci. Math. Sci. 117(1), 31–48 (2007) · Zbl 1119.39023 · doi:10.1007/s12044-007-0003-3
[14]Gajda, Z.: On stability of additive mappings. Int. J. Math. Math. Sci. 14, 431–434 (1991) · Zbl 0739.39013 · doi:10.1155/S016117129100056X
[15]Găvruta, P.: A generalization of the Hyers–Ulam–Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 184, 431–436 (1994) · Zbl 0818.46043 · doi:10.1006/jmaa.1994.1211
[16]Hyers, D.H.: On the stability of the linear functional equation. Proc. Nat. Acad. Sci. USA 27, 222–224 (1941) · doi:10.1073/pnas.27.4.222
[17]Hyers, D.H., Isac, G., Rassias, Th.M.: Stability of Functional Equations in Several Variables. Birkhäuser, Basel (1998)
[18]Jung, S.-M.: Hyers–Ulam–Rassias stability of Jensen’s equation and its application. Proc. Am. Math. Soc. 126, 3137–3143 (1998) · Zbl 0909.39014 · doi:10.1090/S0002-9939-98-04680-2
[19]Jung, S.-M.: Hyers–Ulam–Rassias Stability of Functional Equations in Mathematical Analysis. Hadronic Press, Palm Harbor (2001)
[20]Kerner, R.: Z 3-graded algebras and the cubic root of the supersymmetry translations. J. Math. Phys. 33(1), 403–411 (1992) · doi:10.1063/1.529922
[21]Kerner, R.: The cubic chessboard. Class. Quantum Gravity 14(1A), A203–A225 (1997) · Zbl 0897.17002 · doi:10.1088/0264-9381/14/1A/017
[22]Kerner, R.: Ternary algebraic structures and their applications in physics. Preprint, Univ. P. and M. Curie, Paris, http://arxiv.org/math-ph/0011023 (2000)
[23]Kominek, Z.: On a local stability of the Jensen functional equation. Demonstr. Math. 22, 499–507 (1989)
[24]Lee, Y.-H., Jun, K.-W.: A generalization of the Hyers–Ulam–Rassias stability of Jensen’s equation. J. Math. Anal. Appl. 238(1), 305–315 (1999) · Zbl 0933.39053 · doi:10.1006/jmaa.1999.6546
[25]Margolis, B., Diaz, J.B.: A fixed point theorem of the alternative for contractions on a generalized complete metric space. Bull. Am. Math. Soc. 126, 305–309 (1968)
[26]Moslehian, M.S.: Almost derivations on C *-ternary rings. Bull. Belg. Math. Soc. Simon Stevin 14(1), 135–142 (2007)
[27]Moslehian, M.S.: Asymptotic behavior of the extended Jensen equation. Studia Sci. Math. Hung. (to appear)
[28]Moslehian, M.S., Rassias, Th.M.: Stability of functional equations in non-Archimedean spaces. Appl. Anal. Discrete Math. 1(2), 325–334 (2007) · Zbl 1257.39019 · doi:10.2298/AADM0702325M
[29]Moslehian, M.S., Székelyhidi, L.: Stability of ternary homomorphisms via generalized Jensen equation. Results Math. 49, 289–300 (2006) · Zbl 1114.39010 · doi:10.1007/s00025-006-0225-1
[30]Park, C.: A generalized Jensen’s mapping and linear mappings between Banach modules. Bull. Braz. Math. Soc. (NS) 36(3), 333–362 (2005) · Zbl 1093.47040 · doi:10.1007/s00574-005-0043-1
[31]Nambu, Y.: Generalized Hamiltonian dynamics. Phys. Rev. D 7, 2405–2412 (1976) · doi:10.1103/PhysRevD.7.2405
[32]Okubo, S.: Triple products and Yang–Baxter equation. I & II. Octonionic and quaternionic triple systems. J. Math. Phys. 34(7), 3273–3291 (1993) and 34(7), 3292–3315 · Zbl 0790.15028 · doi:10.1063/1.530076
[33]Radu, V.: The fixed point alternative and the stability of functional equations. Semin. Fixed Point Theory 4, 91–96 (2003)
[34]Rassias, Th.M.: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72, 297–300 (1978) · doi:10.1090/S0002-9939-1978-0507327-1
[35]Rassias, Th.M.: Problem 16; 2, Report of the 27th international symp. on functional equations. Aequ. Math. 39, 292–293 (1990) and 39, 309
[36]Rassias, Th.M. (ed.): Functional Equations, Inequalities and Applications. Kluwer Academic, Dordrecht (2003)
[37]Rassias, Th.M., Šemrl, P.: On the behaviour of mappings which do not satisfy Hyers–Ulam stability. Proc. Am. Math. Soc. 114, 989–993 (1992) · doi:10.1090/S0002-9939-1992-1059634-1
[38]Skof, F.: Sull’approssimazione delle applicazioni localmente δ-additive. Atti Accad. Sci. Torino 117, 377–389 (1983)
[39]Takhtajan, L.: On foundation of the generalized Nambu mechanics. Commun. Math. Phys. 160(2), 295–315 (1994) · Zbl 0808.70015 · doi:10.1007/BF02103278
[40]Ulam, S.M.: Problems in Modern Mathematics. Wiley, New York (1964). Chap. VI, Science editions
[41]Vainerman, L., Kerner, R.: On special classes of n-algebras. J. Math. Phys. 37(5), 2553–2565 (1996) · Zbl 0864.17002 · doi:10.1063/1.531526
[42]Zettl, H.: A characterization of ternary rings of operators. Adv. Math. 48, 117–143 (1983) · Zbl 0517.46049 · doi:10.1016/0001-8708(83)90083-X