zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A new halfspace-relaxation projection method for the split feasibility problem. (English) Zbl 1135.65022
Let C and Q be nonempty closed convex in n and m , respectively, and A an m×n real matrix. The problem, to find xC with AxQ if such x exists, is called the split feasibility problem(SPF). The authors propose a new halfspace-relaxation projection method for the SFP. The method is implemented very easily and is proven to be fully convergent to the solution for the case where the solution set of the SFP is nonempty.

MSC:
65F30Other matrix algorithms
References:
[1]Bauschke, H. H.; Borwein, J. M.: On projection algorithms for solving convex feasibility problems, SIAM rev. 38, 367-426 (1996) · Zbl 0865.47039 · doi:10.1137/S0036144593251710
[2]Byrne, C. L.: Bregman – Legendre mulidistance projection algorithms for convex feasibility and optimization, Inherently parallel algorithms in feasibility and optimization and their applications, 87-100 (2001) · Zbl 0990.90094
[3]Byrne, C. L.: Iterative oblique projection onto convex sets and the split feasibility problem, Inverse problems 18, 441-453 (2002) · Zbl 0996.65048 · doi:10.1088/0266-5611/18/2/310
[4]Byrne, C. L.: A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse problems 20, 103-120 (2004) · Zbl 1051.65067 · doi:10.1088/0266-5611/20/1/006
[5]Censor, Y.; Elfving, T.: A multiprojection algorithm using Bregman projections in a product space, Numer. algorithms 8, 221-239 (1994) · Zbl 0828.65065 · doi:10.1007/BF02142692
[6]Censor, Y.; Bortfeld, T.; Martin, B.; Trofimov, A.: A unified approach for inversion problems in intensity-modulated radiation therapy, Phys. med. Biol. 51, 2353-2365 (2006)
[7]Yang, Q. Z.: The relaxed CQ algorithm solving the split feasibility problem, Inverse problems 20, 1261-1266 (2004) · Zbl 1066.65047 · doi:10.1088/0266-5611/20/4/014
[8]Fukushima, M.: A relaxed projection method for variational inequalities, Math. program. 35, 58-70 (1986) · Zbl 0598.49024 · doi:10.1007/BF01589441
[9]Gafni, E. M.; Bertsekas, D. P.: Two-metric projection problems and descent methods for asymmetric variational inequality problems, Math. program. 53, 99-110 (1984)
[10]He, B. S.: A class of projection and contraction methods for monotone variational inequalities, Appl. math. Optim. 35, 69-76 (1997) · Zbl 0865.90119
[11]Polyak, B. T.: Minimization of unsmooth functionals, USSR comput. Math. math. Phys. 9, 14-29 (1969) · Zbl 0229.65056 · doi:10.1016/0041-5553(69)90061-5
[12]Qu, B.; Xiu, N. H.: A note on the CQ algorithm for the split feasibility problem, Inverse problems 21, 1655-1665 (2005) · Zbl 1080.65033 · doi:10.1088/0266-5611/21/5/009
[13]Rockafellar, R. T.: Convex analysis, (1970) · Zbl 0193.18401
[14]Solodov, M. V.; Tseng, P.: Modified projection-type methods for monotone variational inequalities, SIAM J. Control optimiz. 34, No. 5, 1814-1830 (1996) · Zbl 0866.49018 · doi:10.1137/S0363012994268655
[15]Toint, Ph.L.: Global convergence of a class of trust region methods for nonconvex minimization in Hilbert space, IMA J. Numer. anal. 8, 231-252 (1988) · Zbl 0698.65043 · doi:10.1093/imanum/8.2.231
[16]Zarantonello, E. H.: Projections on convex sets in Hilbert space and spectral theory, Contributions to nonlinear functional analysis (1971) · Zbl 0281.47043