zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Variational and non-variational eigenvalues of the p-Laplacian. (English) Zbl 1136.35061

This paper is concerned with nonlinear eigenvalue problems

Δ p u=(q-λr)|u| p-1 sgnuinΩ,

for which not all eigenvalues are of variational type in the sense of Ljusternik-Schnirelman (1934; Zbl 0011.02803); see e.g. H. Amann [Math. Ann. 199, 55–71 (1972; Zbl 0233.47049)]. Here Δ p is the p-Laplacian with 1<p2, Ω is a smooth domain in N , and q,rC 1 (Ω ¯) are coefficients with r>0 on Ω ¯.

Some examples are given for ordinary differential equations with periodic boundary conditions and partial differential equations with Neumann boundary conditions, in the case of non-constant coefficients. Moreover, for the periodic problem, the variational eigenvalues are characterized via an extremal property within the set of Carathéodory eigenvalues.


MSC:
35P30Nonlinear eigenvalue problems for PD operators; nonlinear spectral theory
47J10Nonlinear spectral theory, nonlinear eigenvalue problems
References:
[1]Anane, A.: Simplicité et isolation de la première valeur propre du p-laplacien avec poids, C. R. Acad. sci. Paris sér. I math. 305, 725-728 (1987) · Zbl 0633.35061
[2]Binding, P.; Drábek, P.: Sturm – Liouville theory for the p-Laplacian, Studia sci. Math. hungar. 40, 375-396 (2003) · Zbl 1048.34056 · doi:10.1556/SScMath.40.2003.4.1
[3]Binding, P. A.; Rynne, B. P.: The spectrum of the periodic p-Laplacian, J. differential equations 235, 199-218 (2007) · Zbl 1218.34100 · doi:10.1016/j.jde.2006.11.019
[4]P.A. Binding, B.P. Rynne, Oscillation and interlacing for various spectra of the p-Laplacian, submitted for publication · Zbl 1172.35462 · doi:10.1016/j.na.2009.01.121
[5]Coddington, E. A.; Levinson, N.: Theory of ordinary differential equations, (1955) · Zbl 0064.33002
[6]Cuesta, M.: Eigenvalue problems for the p-Laplacian with indefinite weights, Electron. J. Differential equations 33 (2001)
[7]Di Benedetto, E.: C1+α local regularity of weak solutions of degenerate elliptic equations, Nonlinear anal. 7, 827-850 (1983) · Zbl 0539.35027 · doi:10.1016/0362-546X(83)90061-5
[8]Drábek, P.; Manásevich, R.: On the closed solution to some nonhomogeneous eigenvalue problems with p-Laplacian, Differential integral equations 12, 773-788 (1999) · Zbl 1015.34071
[9]Drábek, P.; Robinson, S. B.: Resonance problems for the p-Laplacian, J. funct. Anal. 169, 189-200 (1999) · Zbl 0940.35087 · doi:10.1006/jfan.1999.3501
[10]Ghoussoub, N.: Duality and perturbation methods in critical point theory, (1996)
[11]Huang, Y. X.: On eigenvalue problems of p-Laplacian with Neumann boundary conditions, Proc. amer. Math. soc. 109, 177-184 (1990) · Zbl 0715.35061 · doi:10.2307/2048377
[12]Huang, Y. X.; Metzen, G.: The existence of solutions to a class of semilinear differential equations, Differential integral equations 8, 429-452 (1995) · Zbl 0818.34013
[13]Lê, A.: Eigenvalue problems for the p-Laplacian, Nonlinear anal. 64, 1057-1099 (2006) · Zbl 1208.35015 · doi:10.1016/j.na.2005.05.056
[14]Lê, A.; Schmitt, K.: Variational eigenvalues of degenerate eigenvalue problems for the weighted p-Laplacian, Adv. nonlinear stud. 5, 573-585 (2005) · Zbl 1210.35175
[15]Lindqvist, P.: On the equation div(|&nabla;u|p-2&nabla;u)+λ|u|p - 2u=0, Proc. amer. Math. soc. 109, 157-164 (1990)
[16]&ocirc, M.; Tani; Teshima, T.: On the first eigenvalue of some quasilinear elliptic equations, Proc. Japan acad. Ser. A math. Sci. 64, 8-10 (1988)
[17]Reichel, W.; Walter, W.: Sturm – Liouville type problems for the p-Laplacian under asymptotic non-resonance conditions, J. differential equations 156, 50-70 (1999) · Zbl 0931.34059 · doi:10.1006/jdeq.1998.3611
[18]Szulkin, A.: Ljusternik – Schnirelmann theory on C1-manifolds, Ann. inst. H. Poincaré anal. Non linéaire 5, 119-139 (1988) · Zbl 0661.58009 · doi:numdam:AIHPC_1988__5_2_119_0