zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On superintegrability of the Manev problem and its real Hamiltonian form. (English) Zbl 1136.70318
Mladenov, Ivaïlo M.(ed.) et al., Proceedings of the 6th international conference on geometry, integrability and quantization, Sts. Constantine and Elena, Bulgaria, June 3–10, 2004. Sofia: Bulgarian Academy of Sciences (ISBN 954-84952-9-5/pbk). 262-275 (2005).
Summary: We construct Ermanno-Bernoulli type invariants for the Manev model dynamics which may be viewed as remnants of the Laplace-Runge-Lenz vector in the Kepler model. If the orbits are bounded, these invariants exist only when a certain rationality condition is met, and thus we have superintegrability only on a subset of initial values. The dynamics of the Manev model is demonstrated to be bi-Hamiltonian and a recursion operator is constructed. We analyze the ‘real form dynamics’ of the Manev model and establish that it is always superintegrable. We also discuss the symmetry algebras of the Manev model and its real Hamiltonian form.
MSC:
70H05Hamilton’s equations
37J35Completely integrable systems, topological structure of phase space, integration methods
70F05Two-body problems
70H06Completely integrable systems and methods of integration (mechanics of particles and systems)
70H33Symmetries and conservation laws, reverse symmetries, invariant manifolds, etc.