zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Noether versus Killing symmetry of conformally flat Friedmann metric. (English) Zbl 1136.83010
Summary: In a recent study Noether symmetries of some static spacetime metrics in comparison with Killing vectors of corresponding spacetimes were studied. It was shown that Noether symmetries provide additional conservation laws that are not given by Killing vectors. In an attempt to understand how Noether symmetries compare with conformal Killing vectors, we find the Noether symmetries of the flat Friedmann cosmological model. We show that the conformally transformed flat Friedman model admits additional conservation laws not given by the Killing or conformal Killing vectors. Inter alia, these additional conserved quantities provide a mechanism to twice reduce the geodesic equations via the associated Noether symmetries.
MSC:
83C15Closed form solutions of equations in general relativity
83C05Einstein’s equations (general structure, canonical formalism, Cauchy problems)
Software:
CRACK; LIEPDE; ApplySym
References:
[1]Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation Benjamin, New York (1973)
[2]Petrov A.Z. (1969). Einstein Spaces. Pergamon, Oxford
[3]Stephani H., Kramer D., MacCallum M.A.H., Hoenselaers C. (2003). Exact solutions of Einstein Field Equations. Cambridge University Press, Cambridge
[4]Katzin, G.H., Levine, J.: Coloq. Math. 26, (21) (1972)
[5]Hall, G.S.: Symmetries and curvature structure in general relativity. World Scientific, (2004)
[6]Bokhari A.H., Kashif A.R. (1996). J. Math. Phys. 37(7): 3496 · Zbl 0865.53072 · doi:10.1063/1.531577
[7]Giachetta, G., Sardanashvily, G.: Stree-energy-momentum tensors in Lagrangian field theory, arXiv:gr-qc/9510061
[8]Camci U., Barnes A. (2002). Class. Quantum Grav. 19: 393 · Zbl 0996.83064 · doi:10.1088/0264-9381/19/2/312
[9]Nunez L.A., Percoco U., Villalba V.M. (1990). J. Math. Phys. 31: 137 · Zbl 0717.53014 · doi:10.1063/1.528872
[10]Bokhari A.H. (1992). Int. J. Th. Phys. 31: 2091 · Zbl 0770.53012 · doi:10.1007/BF00679968
[11]Amer M.J., Bokhari A.H., Qadir A. (1994). J. Math. Phys. 35(6): 3005 · Zbl 0817.53047 · doi:10.1063/1.530499
[12]Marteen, R., Maharaj, S.D.: Class. Quantum Grav., 3, 1005 (1986)
[13]Fatibene L., Ferraris M., Francaviglia M., McLenaghan R.G. (2002). J. Math. Phys. 43(6): 3147 · Zbl 1059.70021 · doi:10.1063/1.1469668
[14]Mangiarotti L., Sardanashvily G. (2000). Connections in classical and quantum field theory. World Scientific, Singapore
[15]Bokhari A.H., Kara A.H., Kashif A.R., Zaman F.D. (2006). Int. J. Th. Phys. 45(6): 1063 · Zbl 1125.83305 · doi:10.1007/s10773-006-9096-1
[16]Wolf, T.: Crack, LiePDE, ApplySym and ConLaw, section 4.3.5 and computer program on CD-ROM. In: Grabmeier, J., Kaltofen, E., Weispfenning, V. (eds.) Computer Algebra Handbook, vol. 465. Springer, Heidelberg (2002)
[17]Wolf T. (2004). Applications of CRACK in the classification of integrable systems. CRM Proc. Lect. Notes 37: 283
[18]Bokhari, A.H.: Conformal extension of Pseudo-Newtonian Formalis, PhD Thesis, Quaid-i-Azam University (1985)
[19]Kara A.H., Mahomed F.M., Vawda F.E. (1994). Lie groups and their applications 2: 27
[20]Kara A.H., Khalique C.M. (2005). J. Phys. A 38: 4629 · Zbl 1069.37047 · doi:10.1088/0305-4470/38/21/008