zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Delay-dependent robust stability criteria for uncertain systems with interval time-varying delay. (English) Zbl 1136.93437
Summary: This paper proposes an approach for the robust stability of uncertain systems with interval time-varying delay. The key features of the approach include the introduction of uncorrelated augmented matrix items into the Lyapunov functional and the use of a tighter bounding technology. Unlike existing methodologies, the proposed approach involves neither free weighting matrices nor any model transformation. It can, however, lead to much less conservative stability criteria than the existing ones for the systems under consideration. Numerical examples show that the proposed criteria improve the existing results significantly with much less computational effort.
MSC:
93D21Adaptive or robust stabilization
93C41Control problems with incomplete information
34K50Stochastic functional-differential equations
References:
[1]Chen, W. H.; Zheng, W. X.: Delay-dependent robust stabilization for uncertain neutral systems with distributed delays, Automatica 43, 95-104 (2007) · Zbl 1140.93466 · doi:10.1016/j.automatica.2006.07.019
[2]Fridman, E.; Shaked, U.: A descriptor system approach to H control of linear time-delay systems, IEEE trans. Automat. control 47, 253-270 (2002)
[3]Fridman, E.; Shaked, U.: An improved stabilization method for linear time-delay systems, IEEE trans. Automat. control 47, 1931-1937 (2002)
[4]Gao, H.; Wang, C.: Comments and further results on ”a descriptor system approach to H control of linear time-delay systems”, IEEE trans. Automat. control 48, 520-525 (2003)
[5]Gu, K.; Niculescu, S. -I.: Further remarks on additional dynamics in various model transformations of linear delay systems, IEEE trans. Automat. control 46, 497-500 (2001) · Zbl 1056.93511 · doi:10.1109/9.911431
[6]Gu, K.; Kharitonov, V. L.; Chen, J.: Stability of time-delay systems, (2003)
[7]Han, Q. L.: Absolute stability for time delay systems with sector-bound nonlinearity, Automatica 41, 2171-2176 (2005) · Zbl 1100.93519 · doi:10.1016/j.automatica.2005.08.005
[8]He, Y.; Wang, Q. G.; Lin, C.: An improved H filter design for systems with time-varying interval delay, IEEE trans. Circuits and systems II: Analog and digital signal process. 53, No. 11, 1235-1239 (2006)
[9]He, Y.; Wu, M.; She, J. -H.; Liu, G. -P.: Delay-dependent robust stability criteria for uncertain neutral systems with mixed delays, Systems and control lett. 51, 57-65 (2004) · Zbl 1157.93467 · doi:10.1016/S0167-6911(03)00207-X
[10]Jiang, X. F.; Han, Q. L.: Delay-dependent robust stability for uncertain linear systems with interval time-varying delay, Automatica 42, 1059-1065 (2006) · Zbl 1135.93024 · doi:10.1016/j.automatica.2006.02.019
[11]Jing, X. -J.; Tan, D. -L.; Wang, Y. -C.: An LMI approach to stability of systems with severe time-delay, IEEE trans. Automat. control 49, No. 7, 1192-1195 (2004)
[12]Kim, J. H.: Delay and its time-derivative dependent robust stability of time-delayed linear systems with uncertainty, IEEE trans. Automat. control 46, 789-792 (2001) · Zbl 1008.93056 · doi:10.1109/9.920802
[13]Lee, Y. S.; Moon, Y. S.; Kwon, W. H.; Park, P. G.: Delay dependent robust H control for uncertain systems with a state delay, Automatica 40, 65-72 (2004) · Zbl 1046.93015 · doi:10.1016/j.automatica.2003.07.004
[14]Moon, Y. S.; Park, P.; Kwon, W. H.; Lee, Y. S.: Delay-dependent robust stabilization of uncertain state-delayed systems, Internat. J. Control 74, 1447-1455 (2001) · Zbl 1023.93055 · doi:10.1080/00207170110067116
[15]Park, J. H.: A new delay-dependent criterion for neutral systems with multiple delays, J. comput. Appl. math. 136, 177-184 (2001) · Zbl 0995.34069 · doi:10.1016/S0377-0427(00)00583-5
[16]Parlakci, M. N. A.: Robust stability of uncertain time-varying state-delayed ststems, IEE proc.: control theory appl. 153, No. 4, 469-477 (2006)
[17]Tian, Y. -C.; Yu, Z. G.; Fidge, C.: Multifractal nature of network induced time delay in networked control systems, Phys. lett. A 361, 103-107 (2007) · Zbl 1170.68318 · doi:10.1016/j.physleta.2006.09.046
[18]Wu, M.; He, Y.; She, J. -H.: New delay-dependent stability criteria and stabilizing method for neutral systems, IEEE trans. Automat. control 49, 2266-2271 (2004)
[19]Wu, M.; He, Y.; She, J. -H.; Liu, G. -P.: Delay-dependent criteria for robust stability of time-varying delay systems, Automatica 40, 1435-1439 (2004) · Zbl 1059.93108 · doi:10.1016/j.automatica.2004.03.004
[20]Xu, S.; Lam, J.: Improved delay-dependent stability criteria for time-delay systems, IEEE trans. Automat. control 50, No. 3, 384-387 (2005)
[21]Xu, S.; Lam, J.; Zou, Y.: Further results on delay-dependent robust stability conditions of uncertain neutral systems, Internat. J. Robust and nonlinear control 15, 233-246 (2005) · Zbl 1078.93055 · doi:10.1002/rnc.983
[22]Xu, S.; Lam, J.; Zou, Y.: New results on delay-dependent robust H control for systems with time-varying delay, Automatica 42, 343-348 (2006) · Zbl 1099.93010 · doi:10.1016/j.automatica.2005.09.013
[23]Yue, D.; Han, Q. L.; Lam, J.: Network-based robust H control of systems with uncertainty, Automatica 41, 999-1007 (2005) · Zbl 1091.93007 · doi:10.1016/j.automatica.2004.12.011
[24]Yue, D.; Peng, C.; Tang, G. Y.: Guaranteed cost control of linear systems over networks with state and input quantisations, IEE proc.: control theory appl. 153, No. 6, 658-664 (2006)
[25]Yue, D.; Won, S.: An improvement on delay and its time-derivative dependent robust stability of time-delayed linear systems with uncertainty, IEEE trans. Automat. control 47, 407-408 (2002)
[26]Yue, D.; Won, S.; Kwon, O.: Delay dependent stability of neutral systems with time delay: an LMI approach, IEE proc.: control theory appl. 150, No. 1, 23-27 (2003)