zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On tracial approximation. (English) Zbl 1137.46035
Let T be a tree with finitely many vertices {v i } i=1 n and let (k ¯ i ={k i1 ,,k ij i }) i=1 n be n partitions of an integer k, with all numbers non-zero. The splitting tree algebra S(k ¯ 1 ,,k ¯ n ;T) is the algebra of all continuous M k ()-valued functions f on T such that f(v i )M k i1 ()M k ij i () for all i. Let 𝒮 be a class of splitting tree algebras and let TA𝒮 be the class of C * -algebras that can be tracially approximated by the C * -algebras in 𝒮. Let A be a simple separable C * -algebra in TA𝒮. It is shown that there exists a simple inductive limit C * -algebra B of C * -algebras in the class 𝒮 ' consisting of 𝒮 together with the Gong standard homogeneous C * -algebras such that the Elliott invariant of A is isomorphic to the Elliott invariant of B.

MSC:
46L35Classifications of C * -algebras
46L05General theory of C * -algebras
References:
[1]Blackadar, B.: Matricial and ultramatricial topology, Res. notes math. 5, 11-38 (1993) · Zbl 0803.46075
[2]Blackadar, B.: K-theory for operator algebras, Math. sci. Res. inst. Publ. 5 (1998) · Zbl 0913.46054
[3]Bratteli, O.: Inductive limits of finite dimensional C*-algebras, Trans. amer. Math. soc. 171, 195-234 (1972) · Zbl 0264.46057 · doi:10.2307/1996380
[4]Choi, M. D.: The full C*-algebra of the free group on two generators, Pacific J. Math. 87, No. 1, 41-48 (1980) · Zbl 0463.46047
[5]Dadarlat, M.: Nonnuclear subalgebras of AF algebras, Amer. J. Math. 122, No. 3, 581-597 (2000) · Zbl 0964.46034 · doi:10.1353/ajm.2000.0018 · doi:http://muse.jhu.edu/journals/american_journal_of_mathematics/toc/ajm122.3.html
[6]Effros, E. G.; Handelman, D. E.; Shen, C. L.: Dimension groups and their affine representations, Amer. J. Math. 102, No. 2, 385-407 (1980) · Zbl 0457.46047 · doi:10.2307/2374244
[7]Eilers, S.; Loring, T.; Pedersen, G. K.: Stability of anticommutation relations: an application of noncommutative CW complexes, J. reine angew. Math. 499, 101-143 (1998) · Zbl 0897.46056
[8]Elliott, G. A.: On the classification of the inductive limits of sequences of semisimple finite dimensional algebras, J. algebra 38, No. 1, 29-44 (1976) · Zbl 0323.46063 · doi:10.1016/0021-8693(76)90242-8
[9]Elliott, G. A.: Dimension groups with torsion, Internat. J. Math. 1, No. 4, 361-380 (1990) · Zbl 0748.46037 · doi:10.1142/S0129167X90000198
[10]Elliott, G. A.: A classification of certain simple C*-algebras, Math. phys. Stud. 16, 373-385 (1993) · Zbl 0843.46045
[11]Elliott, G. A.: An invariant for simple C*-algebras, Canadian mathematical society. 1945 – 1995 3, 61-90 (1996) · Zbl 1206.46046
[12]Elliott, G. A.; Evans, D. E.: The structure of the irrational rotation C*-algebra, Ann. of math. (2) 138, No. 3, 477-501 (1993) · Zbl 0847.46034 · doi:10.2307/2946553
[13]Elliott, G. A.; Gong, G.: On the classification of C*-algebras of real rank zero. II, Ann. of math. (2) 144, No. 3, 497-610 (1996) · Zbl 0867.46041 · doi:10.2307/2118565
[14]Elliott, G. A.; Gong, G.; Li, L.: On the classification of simple inductive limit C*-algebras, II: The isomorphism theorem, Invent. math. 168, No. 2, 249-320 (2007) · Zbl 1129.46051 · doi:10.1007/s00222-006-0033-y
[15]Fan, Q.; Fang, X.: C*-algebras of tracially stable rank one, Acta math. Sinica (Chin. Ser.) 48, No. 5, 929-934 (2005) · Zbl 1125.46308
[16]Gong, G.: On the classification of simple inductive limit C*-algebras. I. the reduction theorem, Doc. math. 7, 255-461 (2002) · Zbl 1024.46018 · doi:emis:journals/DMJDMV/vol-07/13.html
[17]Jiang, X.; Su, H.: A classification of simple limits of splitting interval algebras, J. funct. Anal. 151, No. 1, 50-76 (1997) · Zbl 0921.46057 · doi:10.1006/jfan.1997.3120
[18]Lin, H.: Classification of simple tracially AF C*-algebras, Canad. J. Math. 53, No. 1, 161-194 (2001) · Zbl 0968.46043 · doi:10.4153/CJM-2001-007-8
[19]Lin, H.: An introduction to the classification of amenable C*-algebras, (2001) · Zbl 1013.46055
[20]Lin, H.: The tracial topological rank of C*-algebras, Proc. London math. Soc. 83, No. 1, 199-234 (2001) · Zbl 1015.46031 · doi:10.1112/plms/83.1.199
[21]Lin, H.: Tracially AF C*-algebras, Trans. amer. Math. soc. 353, No. 2, 693-722 (2001)
[22]Lin, H.: Classification of simple C*-algebras and higher dimensional noncommutative tori, Ann. of math. (2) 157, No. 2, 521-544 (2003) · Zbl 1049.46052 · doi:10.4007/annals.2003.157.521
[23]Lin, H.: Simple nuclear C*-algebras of tracial topological rank one, (2004)
[24]H. Lin, N.C. Phillips, Crossed products by minimal homeomorphisms, preprint, 2004
[25]Z. Niu, A classification of tracially approximately splitting tree algebra, in preparation
[26]Niu, Z.: On the classification of TAI algebras, C. R. Math. acad. Sci. soc. R. can. 26, No. 1, 18-24 (2004)
[27]Z. Niu, A classification of certain tracially approximately subhomogeneous C*-algebras, PhD thesis, University of Toronto, 2005
[28]Z. Niu, Generators and relations for certain splitting tree algebras, J. Operator Theory, in press
[29]Phillips, N. C.: Crossed products by finite cyclic group actions with the tracial rokhlin property, (2003)
[30]Rordam, M.: On the structure of simple C*-algebras tensored with a UHF algebra, J. funct. Anal. 100, 1-17 (1991) · Zbl 0773.46028 · doi:10.1016/0022-1236(91)90098-P
[31]Su, H.: On the classification of C*-algebras of real rank zero: inductive limits of matrix algebras over non-Hausdorff graphs, Mem. amer. Math. soc. 114, No. 547 (1995)
[32]Villadsen, J.: The range of the elliott invariant of the simple AH-algebras with slow dimension growth, K-theory 15, No. 1, 1-12 (1998) · Zbl 0916.19003 · doi:10.1023/A:1007789028440
[33]Villadsen, J.: Simple C*-algebras with perforation, J. funct. Anal. 154, No. 1, 110-116 (1998) · Zbl 0915.46047 · doi:10.1006/jfan.1997.3168
[34]Villadsen, J.: On the stable rank of simple C*-algebras, J. amer. Math. soc. 12, No. 4, 1091-1102 (1999) · Zbl 0937.46052 · doi:10.1090/S0894-0347-99-00314-8
[35]Wassermann, S.: A pathology in the ideal space of L(H)L(H), Indiana univ. Math. J. 27, No. 6, 1011-1020 (1978) · Zbl 0441.46048 · doi:10.1512/iumj.1978.27.27069