zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The existence theorems for fixed and periodic points of nonexpansive mappings in intuitionistic fuzzy metric spaces. (English) Zbl 1137.54326
Summary: We introduce and investigate a class of asymptotically nonexpansive mappings which properly extends the class of nonexpansive mappings. We prove general existence theorems for fixed and periodic points of these mappings in arbitrary intuitionistic fuzzy metric spaces and so we solve an open problem, related to periodic points.

MSC:
54H25Fixed-point and coincidence theorems in topological spaces
54A40Fuzzy topology
47H10Fixed point theorems for nonlinear operators on topological linear spaces
References:
[1]Alaca, C.; Turkogly, D.; Yildiz, C.: Fixed points in intuitionistic fuzzy metric spaces, Chaos, solitons & fractals 29, 1073-1078 (2006) · Zbl 1142.54362 · doi:10.1016/j.chaos.2005.08.066
[2]Atanassov, K.: Intuitionistic fuzzy sets, Fuzzy sets syst 20, 87-96 (1986) · Zbl 0631.03040 · doi:10.1016/S0165-0114(86)80034-3
[3]&cacute, Lj.; Irić: On contraction type mappings, Math balk 1, 52-57 (1971)
[4]&cacute, Lj.; Irić: A generalization of Banach’s contraction principle, Proc am math soc 45, 267-273 (1974)
[5]&cacute, Lj.; Irić: On fixed points of generalized contractions on probabilistic metric spaces, Publ inst math 18, 71-78 (1975)
[6]&cacute, Lj.; Irić: Fixed-point theorems in topological spaces, Fund math 87, 1-5 (1975)
[7]El Naschie, M. S.: On certain infinite dimensional Cantor sets and the Schrödinger wave, Chaos, solitons & fractals 3, 89-98 (1993) · Zbl 0768.60099 · doi:10.1016/0960-0779(93)90042-Y
[8]El Naschie, M. S.: On the unification of heterotic strings, M theory and E-infinity theory, Chaos, solitons & fractals 11, 2397-2408 (2000)
[9]El Naschie, M. S.: On a fuzzy Kähler-like manifold which is consistent with the two slit experiment, Int J nonlinear sci numer simul 6, 517-529 (2005)
[10]El Naschie, M. S.: A review of E-infinity theory and the mass spectrum of high energy particle physics, Chaos, solitons & fractals 19, 209-236 (2004) · Zbl 1071.81501 · doi:10.1016/S0960-0779(03)00278-9
[11]El Naschie, M. S.: Topic in mathematical physics of E-theory, Chaos, solitons & fractals 30, 656-663 (2006)
[12]El Naschie, M. S.: Is Einstein’s generl field equation more fundamental than quantum field theory and particle physics, Chaos, solitons & fractals 30, 525-531 (2006)
[13]George, A.; Veeramani, P.: On some results in fuzzy metric spaces, Fuzzy sets syst 64, 395-399 (1994) · Zbl 0843.54014 · doi:10.1016/0165-0114(94)90162-7
[14]George, A.; Veeramani, P.: On some results of analysis for fuzzy metric spaces, Fuzzy sets syst 90, 365-368 (1997) · Zbl 0917.54010 · doi:10.1016/S0165-0114(96)00207-2
[15]Ghaemi, M. B.; Razani, A.: Fixed and periodic points in the probabilistic normed and metric spaces, Chaos, solitons & fractals 28, 1181-1187 (2006) · Zbl 1101.54042 · doi:10.1016/j.chaos.2005.08.192
[16]Giordano, P.; Iovane, G.; Laserra, E.: El naschie &z.epsi;() Cantorian structures with spatial pseudo-spherical symmetry: a possible description of the actual segregated universe, Chaos, solitons & fractals 31, 1108-1117 (2007)
[17]Grabiec, M.: Fixed points in fuzzy metric spaces, Fuzzy sets syst 27, 385-389 (1988) · Zbl 0664.54032 · doi:10.1016/0165-0114(88)90064-4
[18]Iovane, G.: El naschie’s E-infinity Cantorian space – time and length scales in cosmology, Int J nonlinear sci numer simul 7, 155-162 (2006)
[19]Iovane, G.; Giordano, P.; Salerno, S.: Dynamical systems on el naschie’s &z.epsi;() Cantorian space – time, Chaos, solitons & fractals 24, 423-441 (2005)
[20]Iovane, G.; Gargiulo, G.; Zappale, E.: A Cantorian potential theory for describing dynamical systems on E1 naschie’s space – time, Chaos, solitons & fractals 27, 588-598 (2006)
[21]Kramosil, O.; Michalek, J.: Fuzzy metric and statistical metric spaces, Kybernetika 11, 326-334 (1975) · Zbl 0319.54002
[22]Meijas, A.; Sigalotti, L.; Di, G.; Sira, E.; De Felice, F.: On E1 naschie’s complex time, Hawking’s imaginary time and special relativity, Chaos, solitons & fractals 19, 773-777 (2004)
[23]Park, J. H.: Intuitionistic fuzzy metric spaces, Chaos, solitons & fractals 22, 1039-1046 (2004)
[24]Razani, A.: Existence of fixed point for the nonexpansive mappings in intuitionistic fuzzy metric spaces, Chaos, solitons & fractals 30, 367-373 (2006)
[25]Ray, B. K.: On Ćirić’s fixed point theorem, Fund math 94, 221-229 (1977)
[26]Saadati, R.; Park, J. H.: On the intuitionistic fuzzy topological spaces, Chaos, solitons & fractals 27, 331-344 (2006)
[27]Saadati, R.; Razani, A.; Adibi, H.: A common fixed point theorem in L-fuzzy metric spaces, Chaos, solitons & fractals 33, 358-363 (2007)
[28]Singh, S. L.; Mishra, S. N.: On a ljubomir Ćirić’s fixed point theorem for nonexpansive type maps with applications, Indian J pure appl math 33, 531-542 (2002)
[29]Sigalotti, L.; Di, G.; Meijas, A.: On el naschie’s conjugate complex time, fractal &z.epsi;() space – time and faster-than-light particles, Int J nonlinear sci numer simul 7, 467-472 (2006)
[30]Tanaka, Y.: Space-time symmetry, chaos and E-infinity theory, Chaos, solitons & fractals 23, 335-349 (2005) · Zbl 1075.83541 · doi:10.1016/j.chaos.2004.05.035
[31]Tanaka, Y.: The mass spectrum of heavier hudrons and E-infinity theory, Chaos, solitons & fractals 32, 996-1007 (2007)
[32]Tanaka, Y.; Mizuno, Y.; Kado, T.; Hua-An, Zhao: Nonlinear dynamics in the relativistic field equation, Chaos, solitons & fractals 31, 1054-1075 (2007)
[33]Vasuki, R.: A common fixed point theorem in a fuzzy metric space, Fuzzy sets syst 97, 395-397 (1998) · Zbl 0926.54005 · doi:10.1016/S0165-0114(96)00342-9
[34]Wang, J.; Zhou, T.: Chaos synchronization based on contraction principle, Chaos, solitons & fractals 33, 163-170 (2007) · Zbl 1152.37321 · doi:10.1016/j.chaos.2006.01.033
[35]Zadeh, L. A.: Fuzzy sets, Inform control 8, 338-353 (1965) · Zbl 0139.24606 · doi:10.1016/S0019-9958(65)90241-X