zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Gamma generalized linear models for pharmacokinetic data. (English) Zbl 1137.62078

Summary: This article considers the modeling of single-dose pharmacokinetic data. Traditionally, so-called compartmental models have been used to analyze such data. Unfortunately, the mean function of such models are sums of exponentials for which inference and computation may not be straightforward. We present an alternative to these models based on generalized linear models, for which desirable statistical properties exist, with a logarithmic link and gamma distribution. The latter has a constant coefficient of variation, which is often appropriate for pharmacokinetic data. Inference is convenient from either a likelihood or a Bayesian perspective. We consider models for both single and multiple individuals, the latter via generalized linear mixed models. For single individuals, Bayesian computation may be carried out with recourse to simulation.

We describe a rejection algorithm that, unlike Markov chain Monte Carlo, produces independent samples from the posterior and allows straightforward calculation of Bayes factors for model comparison. We also illustrate how prior distributions may be specified in terms of model-free pharmacokinetic parameters of interest. The methods are applied to data from 12 individuals following administration of the antiasthmatic agent theophylline.

MSC:
62P10Applications of statistics to biology and medical sciences
92C45Kinetics in biochemical problems
62J12Generalized linear models
62F15Bayesian inference