zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Optimization of transit route network, vehicle headways and timetables for large-scale transit networks. (English) Zbl 1138.90350
Summary: This paper presents a metaheuristic method for optimizing transit networks, including route network design, vehicle headway, and timetable assignment. Given information on transit demand, the street network of the transit service area, and total fleet size, the goal is to identify a transit network that minimizes a passenger cost function. Transit network optimization is a complex combinatorial problem due to huge search spaces of route network, vehicle headways, and timetables. The methodology described in this paper includes a representation of transit network variable search spaces (route network, headway, and timetable); a user cost function based on passenger random arrival times, route network, vehicle headways, and timetables; and a metaheuristic search scheme that combines simulated annealing, tabu, and greedy search methods. This methodology has been tested with problems reported in the existing literature, and applied to a large-scale realistic network optimization problem. The results show that the methodology is capable of producing improved solutions to large-scale transit network design problems in reasonable amounts of time and computing resources.
MSC:
90B10Network models, deterministic (optimization)
90B06Transportation, logistics
90C27Combinatorial optimization