zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Existence and global attractivity of almost periodic solution for DCNNs with time-varying coefficients. (English) Zbl 1138.93031
Summary: By using exponential dichotomy, the Banach fixed point theory and some inequality analysis technology, some sufficient conditions are derived ensuring existence, uniqueness and global attractivity of almost periodic solution of Delayed Cellular Neural Networks (DCNNs) with time-varying coefficients. Without assuming the boundedness of signal functions, the results obtained have sufficient significance in design and applications of almost periodic oscillatory DCNNs.
MSC:
93C15Control systems governed by ODE
93C10Nonlinear control systems
93B27Geometric methods in systems theory
92B20General theory of neural networks (mathematical biology)
68Q80Cellular automata (theory of computing)
References:
[1]Chua, L. O.; Yang, L.: Cellular neural networks: theory and application, IEEE transactions on circuits and systems 35, 1257-1272 (1988) · Zbl 0663.94022 · doi:10.1109/31.7600
[2]Roska, T.; Wu, C. W.; Balsi, M.; Chua, L. O.: Stability and dynamics of delay-type general and cellular neural networks, IEEE transactions on circuits and systems 39, 487-490 (1992) · Zbl 0775.92010 · doi:10.1109/81.153647
[3]Chen, A.; Huang, L.: Existence and global exponential stability conditions of almost periodic solution in dcnns with variable coefficients, Southeast asian bulletin of mathematics 26, 1-11 (2003)
[4]Chen, A.; Cao, J.; Huang, L.: Periodic solution and global exponential stability for shunting inhibitory delayed cellular neural networks, Electronic journal of differential equations 29, 1-16 (2004) · Zbl 1057.34091 · doi:emis:journals/EJDE/Volumes/2004/29/abstr.html
[5]Chen, A.; Cao, J.: Existence and attractivity of almost periodic solutions for cellular neural networks with distributed delays and variable coefficients, Applied mathematics and computation 134, 125-140 (2003) · Zbl 1035.34080 · doi:10.1016/S0096-3003(01)00274-0
[6]Cao, J.: New results concerning exponential stability and periodic solutions of delayed cellular neural networks, Physics letters A 307, No. 2–3, 144-155 (2003) · Zbl 1006.68107 · doi:10.1016/S0375-9601(02)01720-6
[7]Danciu, D.; Räsvan, V.: Stability results for cellular neural networks with time delays, Lecture notes in computer science 3512, 366-373 (2005)
[8]Gyori, I.; Hartung, F.: Stability results for cellular neural networks with delays, Electronic journal of qualitative theory of differential equations 13, 1-14 (2004)
[9]Hao, F.; Wang, L.; Chu, T.: A new criterion on exponential stability of a class of discrete cellular neural networks with time delay, Lecture notes in computer science 3610, 769-772 (2005)
[10]Liao, X.; Wang, J.; Zeng, Z.: Global asymptotic stability and global exponential stability of delayed cellular neural networks, IEEE transactions on circuits and systems II 52, No. 7, 403-409 (2005)
[11]Zhang, Q.; Wei, X. P.; Xu, J.: On global exponential stability of delayed cellular neural networks with time-varying delays, Applied mathematics and computation 162, 679-686 (2005) · Zbl 1114.34337 · doi:10.1016/j.amc.2004.01.004
[12]Zheng, W.; Zhang, J.: Global exponential stability of a class of neural networks with variable delays, Computers and mathematics with applications 49, No. 5–6, 895-902 (2005) · Zbl 1085.34061 · doi:10.1016/j.camwa.2004.03.015
[13]Zhang, Y.; Pheng, H. A.; Vadakkepat, P.: Absolute periodicity and absolute stability of neural networks with delays, IEEE transactions on circuits and systems 49, No. 2, 256-261 (2002)
[14]Huang, H.; Ho, Daniel W. C.; Cao, J.: Analysis of global exponential stability and periodic solutions of neural networks with time-varying delays, Neural networks 18, 161-170 (2005) · Zbl 1078.68122 · doi:10.1016/j.neunet.2004.11.002
[15]Huang, X.; Cao, J.: Almost periodic solution of shunting inhibitory cellular neural networks with time-varying delays, Physics letters A 314, No. 3, 222-231 (2003) · Zbl 1052.82022 · doi:10.1016/S0375-9601(03)00918-6
[16]Li, Y.: Global stability and existence of periodic solutions of discrete delayed cellular neural networks, Physics letters A 333, 51-61 (2004) · Zbl 1123.39302 · doi:10.1016/j.physleta.2004.10.022
[17]Wei, J.; Ruan, S.: Stability and bifurcation in a neural network model with two delays, Physica D 130, 255-272 (1999) · Zbl 1066.34511 · doi:10.1016/S0167-2789(99)00009-3
[18]Zhang, Y.; Pheng, H. A.; Leung, K. S.: Convergence analysis of cellular neural networks with unbounded delay, IEEE transactions on circuits and systems 48, No. 6, 680-687 (2001) · Zbl 0994.82068 · doi:10.1109/81.928151
[19]He, C. Y.: Almost periodic differential equations, (1992)
[20]Fink, A. M.: Almost periodic differential equation, (1974)