×

Isolation and handling of actuator faults in nonlinear systems. (English) Zbl 1138.93330

Summary: This work considers the problem of control actuator fault detection and isolation and fault-tolerant control for a multi-input multi-output nonlinear system subject to constraints on the manipulated inputs and proposes a fault detection and isolation filter and controller reconfiguration design. The implementation of the fault detection and isolation filters and reconfiguration strategy are demonstrated via a chemical process example.

MSC:

93B35 Sensitivity (robustness)
93C41 Control/observation systems with incomplete information
93C95 Application models in control theory
34K35 Control problems for functional-differential equations
93C10 Nonlinear systems in control theory
93B52 Feedback control
94C12 Fault detection; testing in circuits and networks
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Allgöwer, F., & Doyle, F. J. (1997). Nonlinear process control—which way to the promised land?. In Proceedings of 5th international conference on chemical process control; Allgöwer, F., & Doyle, F. J. (1997). Nonlinear process control—which way to the promised land?. In Proceedings of 5th international conference on chemical process control
[2] Aradhye, H. B.; Bakshi, B. R.; Davis, J. F.; Ahalt, S. C., Clustering in wavelet domain: A multiresolution art network for anomaly detection, AIChE Journal, 50, 2455-2466 (2004)
[3] Bao, J.; Zhang, W. Z.; Lee, P. L., Decentralized fault-tolerant control system design for unstable processes, Chemical Engineering Science, 58, 5045-5054 (2003)
[4] Bequette, W. B., Nonlinear control of chemical processes: A review, Industrial & Engineering Chemistry Research, 30, 1391-1413 (1991)
[5] Bonivento, C.; Isidori, A.; Marconi, L.; Paoli, A., Implicit fault-tolerant control: Application to induction motors, Automatica, 40, 355-371 (2004) · Zbl 1043.93021
[6] Christofides, P. D.; El-Farra, N. H., Control of nonlinear and hybrid process systems: Designs for uncertainty, constraints and time-delays (2005), Springer: Springer New York · Zbl 1106.93002
[7] Davis, J. F.; Piovoso, M. L.; Kosanovich, K.; Bakshi, B., Process data analysis and interpretation, Advances in Chemical Engineering, 25, 1-103 (1999)
[8] DeCarlo, R. A.; Branicky, M. S.; Pettersson, S.; Lennartson, B., Perspectives and results on the stability and stabilizability of hybrid systems, Proceedings of the IEEE, 88, 1069-1082 (2000)
[9] DePersis, C.; Isidori, A., A geometric approach to nonlinear fault detection and isolation, IEEE Transactions on Automatic Control, 46, 853-865 (2001) · Zbl 1009.93003
[10] El-Farra, N. H.; Christofides, P. D., Integrating robustness, optimality and constraints in control of nonlinear processes, Chemical Engineering Science, 56, 1841-1868 (2001)
[11] El-Farra, N. H.; Christofides, P. D., Bounded robust control of constrained multivariable nonlinear processes, Chemical Engineering Science, 58, 3025-3047 (2001)
[12] El-Farra, N. H.; Christofides, P. D., Coordinated feedback and switching for control of hybrid nonlinear processes, AIChE Journal, 49, 2079-2098 (2003)
[13] El-Farra, N. H.; Gani, A.; Christofides, P. D., Fault-tolerant control of process systems using communication networks, AIChE Journal, 51, 1665-1682 (2005)
[14] El-Farra, N. H.; Mhaskar, P.; Christofides, P. D., Output feedback control of switched nonlinear systems using multiple Lyapunov functions, Systems & Control Letters, 54, 1163-1182 (2005) · Zbl 1129.93497
[15] Frank, P. M., Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy—a survey and some new results, Automatica, 26, 459-474 (1990) · Zbl 0713.93052
[16] Frank, P. M.; Ding, X., Survey of robust residual generation and evaluation methods in observer-based fault detection systems, Journal of Process Control, 7, 403-424 (1997)
[17] Garcia-Onorio, V.; Ydstie, B. E., Distributed, asynchronous and hybrid simulation of process networks using recording controllers, International Journal of Robotics & Nonlinear Control, 14, 227-248 (2004) · Zbl 1033.93003
[18] Henson, M. A.; Seborg, D. E., Nonlinear process control (1997), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ
[19] Kazantzis, N.; Kravaris, C., Nonlinear observer design using Lyapunov’s auxiliary theorem, Systems & Control Letters, 34, 241-247 (1999) · Zbl 0909.93002
[20] Khalil, H. K.; Esfandiari, F., Semiglobal stabilization of a class of nonlinear systems using output feedback, IEEE Transactions on Automatic Control, 38, 1412-1415 (1993) · Zbl 0787.93079
[21] Kresta, J. V.; Macgregor, J. F.; Marlin, T. E., Multivariate statistical monitoring of process operating performance, Canadian Journal of Chemical Engineering, 69, 35-47 (1991)
[22] Lin, Y.; Sontag, E. D., A universal formula for stabilization with bounded controls, Systems & Control Letters, 16, 393-397 (1991) · Zbl 0728.93062
[23] Massoumnia, M.; Verghese, G. C.; Wilsky, A. S., Failure detection and identification, IEEE Transactions on Automatic Control, 34, 316-321 (1989) · Zbl 0682.93061
[24] Mehranbod, N.; Soroush, M.; Panjapornpon, C., A method of sensor fault detection and identification, Journal of Process Control, 15, 321-339 (2005)
[25] Mhaskar, P.; El-Farra, N. H.; Christofides, P. D., Hybrid predictive control of process systems, AIChE Journal, 50, 1242-1259 (2004)
[26] Mhaskar, P.; Gani, A.; Christofides, P. D., Fault-tolerant control of nonlinear processes: Performance-based reconfiguration and robustness, International Journal of Robotics & Nonlinear Control, 16, 91-111 (2006) · Zbl 1085.93508
[27] Mhaskar, P.; Gani, A.; El-Farra, N. H.; McFall, C.; Christofides, P. D.; Davis, J. F., Integrated fault-detection and fault-tolerant control for process systems, AIChE Journal, 52, 2129-2148 (2006)
[28] Negiz, A.; Cinar, A., Statistical monitoring of multivariable dynamic processes with state-space models, AIChE Journal, 43, 2002-2020 (1997)
[29] Nomikos, P.; Macgregor, J. F., Monitoring batch processes using multiway principal component analysis, AIChE Journal, 40, 1361-1375 (1994)
[30] Patton, R. J. (1997). Fault-tolerant control systems: The 1997 situation. In Proceedings of the IFAC symposium SAFEPROCESS 1997; Patton, R. J. (1997). Fault-tolerant control systems: The 1997 situation. In Proceedings of the IFAC symposium SAFEPROCESS 1997
[31] Pisu, P., Serrani, A., You, S., & Jalics, L. (2006). Adaptive threshold based diagnostics for steer-by-wire systems. Journal of Dynamic Systems Measurement Control—Transactions of the ASME.; Pisu, P., Serrani, A., You, S., & Jalics, L. (2006). Adaptive threshold based diagnostics for steer-by-wire systems. Journal of Dynamic Systems Measurement Control—Transactions of the ASME.
[32] Rollins, D. R.; Davis, J. F., An unbiased estimation technique when gross errors exist in process measurements, AIChE Journal, 38, 563-572 (1992)
[33] Saberi, A.; Stoorvogel, A. A.; Sannuti, P.; Niemann, H., Fundamental problems in fault detection and identification, International Journal of Robotics & Nonlinear Control, 10, 1209-1236 (2000) · Zbl 0967.93037
[34] Soroush, M.; Valluri, S.; Mehranbod, N., Nonlinear control of input-constrained systems, Computers & Chemical Engineering, 30, 158-181 (2005)
[35] Wu, N. E., Coverage in fault-tolerant control, Automatica, 40, 537-548 (2004) · Zbl 1168.93350
[36] Yang, G. H.; Wang, J. L.; Soh, Y. C., Reliable \(H_\infty\) control design for linear systems, Automatica, 37, 717-725 (2001) · Zbl 0990.93029
[37] Zhou, D. H.; Frank, P. M., Fault diagnostics and fault tolerant control, IEEE Transactions on Aerospace and Electronic Systems, 34, 420-427 (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.