zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Power penalty method for a linear complementarity problem arising from American option valuation. (English) Zbl 1139.91020
Summary: In this paper, we present a power penalty function approach to the linear complementarity problem arising from pricing American options. The problem is first reformulated as a variational inequality problem; the resulting variational inequality problem is then transformed into a nonlinear parabolic partial differential equation (PDE) by adding a power penalty term. It is shown that the solution to the penalized equation converges to that of the variational inequality problem with an arbitrary order. This arbitrary-order convergence rate allows us to achieve the required accuracy of the solution with a small penalty parameter. A numerical scheme for solving the penalized nonlinear PDE is also proposed. Numerical results are given to illustrate the theoretical findings and to show the effectiveness and usefulness of the method.
MSC:
91B28Finance etc. (MSC2000)
90C33Complementarity and equilibrium problems; variational inequalities (finite dimensions)
35K20Second order parabolic equations, initial boundary value problems
References:
[1]Wilmott, P., Dewynne, J., and Howison, S., Option Pricing: Mathematical Models and Computation, Oxford Financial Press, Oxford, UK, 1993.
[2]Black, F., and Scholes, M., The Pricing of Options and Corporate Liabilities, Journal of Political Economy, Vol. 81, pp. 637–659, 1973. · doi:10.1086/260062
[3]Cox, J. C., Ross, S., and Rubinstein, M., Option Pricing: A Simplified Approach, Journal of Financial Economics, Vol. 7, pp. 229–264, 1979. · Zbl 1131.91333 · doi:10.1016/0304-405X(79)90015-1
[4]Hull, J. C., and White, A., The Use of Control Variate Technique in Option Pricing, Journal of Financial Economics Quantitative Analysis, Vol. 23, pp. 237–251, 1988. · doi:10.2307/2331065
[5]Barles, G., Convergence of Numerical Schemes for Degenerate Parabolic Equations Arising in Finance Theory, Numerical Methods in Finance, Edited by L.C.G. Rogers and D. Tallay, Cambridge University Press, Cambridge, UK, pp. 1-21, 1997.
[6]Courtadoh, G., A More Accurate Finite-Difference Approximation for the Valuation of Options, Journal of Financial Economics Quantitative Analysis, Vol. 17, pp. 697–703, 1982. · doi:10.2307/2330857
[7]Schwartz, E., The Valuation of Warrants: Implementing a New Approach, Journal of Financial Economics, Vol 13, pp. 79–93, 1977. · doi:10.1016/0304-405X(77)90037-X
[8]Vazquez, C., An Upwind Numerical Approach for an American and European Option Pricing Model, Applied Mathematics and Computation, Vol. 97, pp. 273–286, 1998. · Zbl 0937.91053 · doi:10.1016/S0096-3003(97)10122-9
[9]Allegretto, W., Lin, Y., and Yang, H., Finite-Element Error Estimates for a Nonlocal Problem in American Option Valuation, SIAM Journal on Numerical Analysis, Vol. 39, pp. 834–857, 2001. · Zbl 0996.91064 · doi:10.1137/S0036142900370137
[10]Zvan, R., Forsyth, P. A., and Vetzal, K. R., Penalty Methods for American Options with Stochastic Volatility, Journal of Computational and Applied Mathematics, Vol. 91, pp. 199–218, 1998. · Zbl 0945.65005 · doi:10.1016/S0377-0427(98)00037-5
[11]Forsyth, P. A., and Vetzal, K. R., Quadratic Convergence for Valuing American Options Using a Penalty Method, SIAM Journal on Statistical and Scientific Computing, Vol. 23, pp. 2095–2122, 2002. · Zbl 1020.91017 · doi:10.1137/S1064827500382324
[12]Bensoussan, A., and Lions, J. L., Applications of Variational Inequalities in Stochastic Control, North-Holland, Amsterdam, Holland, 1982.
[13]Glowinski, R., Numerical Methods for Nonlinear Variational Problems, Springer Verlag, New York, NY, 1984.
[14]Rubinov, A. M., and Yang, X. Q., Lagrange-Type Functions in Constrained Nonconvex Optimization, Kluwer Academic Publishers, Dordrecht, Holland, 2003.
[15]Yang, X. Q., and Huang, X. X., A Nonlinear Lagrangian Approach to Constrained Optimization Problems, SIAM Journal on Optimization Vol. 14, pp. 1119–1144, 2001. · Zbl 0999.90049 · doi:10.1137/S1052623400371806
[16]Fletcher, R., Practical Methods of Optimization, Wiley and Sons, New York, NY, 1987.
[17]Brenner, S. C., and Scott, L. R., The Mathematical Theory of Finite-Element Methods, Springer Verlag, New York, NY, 1994.
[18]Wang, S., A Novel Fitted Finite-Volume Method for the Black-Scholes Equation Governing Option Pricing, IMA Journal of Numerical Analysis, Vol. 24, pp. 699–720, 2004. · Zbl 1147.91332 · doi:10.1093/imanum/24.4.699
[19]Haslinger, J., and Miettinen, M., Finite-Element Method for Hemivariational Inequalities, Kluwer Academic Publishers, Dordrecht, Holland, 1999.
[20]Miller, J. J. H., and Wang, S., A New Nonconforming Petrov-Galerkin Method with Triangular Elements for a Singularly-Perturbed Advection-Diffusion Problem, IMA Journal of Numerical Analysis, Vol. 14, pp. 257–276, 1994. · Zbl 0806.65111 · doi:10.1093/imanum/14.2.257
[21]Miller, J. J. H., and Wang, S., An Exponentially Fitted Finite-Element Volume Method for the Numerical Solution of 2D Unsteady Incompressible Flow Problems, Journal of Computational Physics, Vol. 115, pp. 56–64, 1994. · Zbl 0810.76064 · doi:10.1006/jcph.1994.1178
[22]Varga, R. S., Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, New Jersey, 1962.