zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The dynamics of choice among multiple alternatives. (English) Zbl 1139.91028
Summary: We consider neurally based models for decision-making in the presence of noisy incoming data. The two-alternative forced-choice task has been extensively studied, and in that case it is known that mutually inhibited leaky integrators in which leakage and inhibition balance can closely approximate a drift-diffusion process that is the continuum limit of the optimal sequential probability ratio test (SPRT). Here we study the performance of neural integrators in n2 alternative choice tasks and relate them to a multihypothesis sequential probability ratio test (MSPRT) that is asymptotically optimal in the limit of vanishing error rates. While a simple race model can implement this ‘max-vs-next’ MSPRT, it requires an additional computational layer, while absolute threshold crossing tests do not require such a layer. Race models with absolute thresholds perform relatively poorly, but we show that a balanced leaky accumulator model with an absolute crossing criterion can approximate a ‘max-vs-ave’ test that is intermediate in performance between the absolute and max-vs-next tests. We consider free and fixed time response protocols, and show that the resulting mean reaction times under the former and decision times for fixed accuracy under the latter obey versions of Hick’s law in the low error rate range, and we interpret this in terms of information gained. Specifically, we derive relationships of the forms log(n-1), log(n), or log(n+1) depending on error rates, signal-to-noise ratio, and the test itself. We focus on linearized models, but also consider nonlinear effects of neural activities (firing rates) that are bounded below and show how they modify Hick’s law.

91E45Measurement and performance (Mathematical pychology)
62L10Sequential statistical analysis
62M45Neural nets and related approaches (inference from stochastic processes)
92B20General theory of neural networks (mathematical biology)