zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A delay differential model for pandemic influenza with antiviral treatment. (English) Zbl 1139.92017

Summary: The use of antiviral drugs has been recognized as the primary public health strategy for mitigating the severity of a new influenza pandemic strain. However, the success of this strategy requires the prompt onset of therapy within 48 hours of the appearance of clinical symptoms. This requirement may be captured by a compartmental model that monitors the density of infected individuals in terms of the time elapsed since the onset of symptoms.

We show that such a model can be expressed by a system of delay differential equations with both discrete and distributed delays. The model is analyzed to derive the criterion for disease control based on two critical factors: (i) the profile of treatment rate; and (ii) the level of treatment as a function of time lag in commencing therapy. Numerical results are also obtained to illustrate the feasible region of disease control. Our findings show that due to uncertainty in the attack rate of a pandemic strain, initiating therapy immediately upon diagnosis can significantly increase the likelihood of disease control and substantially reduce the required community-level of treatment. This suggests that reliable diagnostic methods for influenza cases should be rapidly implemented within an antiviral treatment strategy.

MSC:
92C60Medical epidemiology
34K60Qualitative investigation and simulation of models
34K35Functional-differential equations connected with control problems
92C50Medical applications of mathematical biology
93A30Mathematical modelling of systems
References:
[1]Arino, J., Brauer, F., van den Driessche, P., Watmough, J., Wu, J., 2006. Simple models for containment of a pandemic. J. Roy. Soc. Interface 3, 453–457. · doi:10.1098/rsif.2006.0112
[2]Baccam, P., Beauchemin, C., Macken, C.A., Hayden, F.G., Perelson, A.S., 2006. Kinetics of influenza A virus infection in humans. J. Virol. 80, 7590–7599. · doi:10.1128/JVI.01623-05
[3]Cox, N.J., Tamblyn, S.E., Tam, T., 2003. Influenza pandemic planning. Vaccine 21, 1801–1803. · doi:10.1016/S0264-410X(03)00076-8
[4]Diekmann, O., Heesterbeek, J.A.P., 2000. Mathematical Epidemiology of Infectious Diseases. Wiley, Chichester.
[5]Ferguson, N.M., Mallett, S., Jackson, H., Roberts, N., Ward, P., 2003. A population-dynamic model for evaluating the potential spread of drug-resistant influenza virus infections during community-based use of antivirals. J. Antimicrob. Chemother. 51, 977–990. · doi:10.1093/jac/dkg136
[6]Ferguson, N.M., Cummings, D.A.T., Cauchemez, S., Fraser, C., Riley, S., Meeyai, A., Iamsirithaworn, S., Burke, D.S., 2005. Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature 437, 209–214. · doi:10.1038/nature04017
[7]Ferguson, N.M., Cummings, D.A.T., Fraser, C., Cajka, J.C., Cooley, P.C., Burke, D.S., 2006. Strategies for mitigating an influenza pandemic. Nature 442, 448–452. · doi:10.1038/nature04795
[8]Gani, R., Hughes, H., Fleming, D., Griffin, T., Medlock, J., Leach, S., 2005. Potential impact of antiviral drug use during influenza pandemic. Emerg. Infect. Dis. 9, 1355–1362.
[9]Germann, T.C., Kadau, K., Longini Jr., I.M., Macken, C.A., 2006. Mitigation strategies for pandemic influenza in the United States. Proc. Natl. Acad. Sci. USA 103, 5935–5940. · doi:10.1073/pnas.0601266103
[10]Gumel, A.B., Ruan, S., Day, T., Watmough, J., Brauer, F., van den Driessche, P., Gabrielson, D., Bowman, C., Alexander, M.E., Ardal, S., Wu, J., Sahai, B.M., 2004. Modeling strategies for controlling SARS outbreaks. Proc. Roy. Soc. B 271, 2223–2232. · doi:10.1098/rspb.2004.2800
[11]Jefferson, T., Demicheli, V., Rivetti, D., Jones, M., Di Pietrantonj, C., Rivetti, A., 2006. Antivirals for influenza in healthy adults: systematic review. Lancet 367, 303–313. · doi:10.1016/S0140-6736(06)67970-1
[12]Linde, A., 2001. The importance of specific virus diagnosis and monitoring for antiviral treatment. Antiviral Res. 51, 81–94. · doi:10.1016/S0166-3542(01)00129-2
[13]Longini Jr., I.M., Halloran, M.E., Nizam, A., Yang, Y., 2004. Containing pandemic influenza with antiviral agents. Am. J. Epidemiol. 159, 623–633. · doi:10.1093/aje/kwh092
[14]Longini Jr., I.M., Nizam, A., Xu, S., Ungchusak, K., Hanshaoworakul, W., Cummings, D.A.T., Halloran, M.E., 2005. Containing pandemic influenza at the source. Science 309, 1083–1087. · doi:10.1126/science.1115717
[15]Metz, J.A.J., Diekmann, O., 1986. The Dynamics of Physiologically Structured populations. Lecture Notes in Biomathematics, vol. 68. Springer, Berlin.
[16]Smith, H.L., 1995. Monotone Dynamical Systems, an Introduction to the Theory of Competitive and Cooperative Systems. Math. Surveys and Monographs, vol. 41. American Mathematical Society, Providence.
[17]Stilianakis, N.I., Perelson, A.S., Hayden, F.G., 1998. Emergence of drug resistance during an influenza epidemic: insights from a mathematical model. J. Infect. Dis. 177, 863–873.
[18]Taubenberger, J.K., Morens, D.M., 2006. 1918 influenza: the mother of all pandemics. Emerg. Infect. Dis. 12, 15–22.
[19]Webb, G.F., 1985. Theory of Nonlinear Age-Dependent Population Dynamics. Dekker, New York.
[20]World Health Organization Writing Group, 2006. Nonpharmaceutical interventions for pandemic influenza. International measures. Emerg. Infect. Dis. 12, 81–87.