zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Robust fuzzy stabilization of dithered chaotic systems using island-based random optimization algorithm. (English) Zbl 1139.93010
Summary: Applying dither to highly nonlinear systems may suppress chaotic phenomena, but dynamic performance, such as convergence rate and disturbance attenuation, is usually not guaranteed. This paper presents a dithered H robust fuzzy control scheme to stabilize chaotic systems that ensures disturbance attenuation bounds. In the proposed scheme, Takagi-Sugeno (T-S) fuzzy linear models are used to describe the relaxed models of the dithered chaotic system, and fuzzy controllers are designed based on an extension to the concept of parallel distributed compensation (PDC). Sufficient conditions for the existence of the H robust fuzzy controllers are presented in terms of a novel linear matrix inequalities (LMI) form which takes full consideration of modeling error and disturbances, but cannot be solved by the standard procedures. In order to solve the LMI problem and to identify the chaotic systems as T-S fuzzy modes, we propose a compound optimization strategy called the Island-based Random-walk Algorithm (IRA). The algorithm is composed of a set of communicating random-walk optimization procedures concatenated with the down-hill simplex method. The design procedure and validity of the proposed scheme is demonstrated via numerical simulation of the dithered fuzzy control of a chaotic system.
MSC:
93B35Sensitivity (robustness) of control systems
93C42Fuzzy control systems
37D45Strange attractors, chaotic dynamics
93D21Adaptive or robust stabilization
References:
[1]Andrievskii, B. R.; Fradkov, A. L.: Control of chaos: methods and applications, Automat. rem. Control 65, 505-533 (2004) · Zbl 1115.37315 · doi:10.1023/B:AURC.0000023528.59389.09
[2]Baba, N.; Ogami, Y. M.; Kohzaki, M.; Shiraishi, Y.; Yoshida, Y.: Hybrid algorithm for finding the global minimum of error function of neural networks and its applications, Neural networks 7, 1253-1265 (1994)
[3]Bixby, Robert E.: Implementing the simplex method: the initial basis, ORSA J. Comput. 4, 267-284 (1992) · Zbl 0759.90063 · doi:10.1287/ijoc.4.3.267
[4]Chen, J. H.; Chau, K. T.; Siu, S. M.; Chan, C. C.: Experimental stabilization of chaos in a voltage-mode dc drive system, IEEE trans. Circ. syst. I 47, 1093-1095 (2000)
[5]Chen, B. S.; Chen, Y. Y.; Lin, C. L.: Nonlinear fuzzy H guidance law with saturation of actuators against maneuvering targets, IEEE trans. Control syst. Technol. 10, 769-779 (2002)
[6]Chen, B. S.; Tseng, C. S.; Uang, H. J.: Robustness design of nonlinear dynamic systems via fuzzy linear control, IEEE trans. Fuzzy syst. 7, 571-585 (1999)
[7]Desoer, C. A.; Shahruz, S. M.: Stability of the dithered nonlinear system with backlash or hysteresis, Int. J. Control 43, 1045-1060 (1986) · Zbl 0583.93054 · doi:10.1080/00207178608933522
[8]Feeny, B. F.; Moon, F. C.: Quenching stick-slip chaos with friction, J. sound vibr. 237, 173-180 (2000)
[9]A.L. Fradkov, R. J. Evans, Control of chaos: survey 1997 – 2000, in: The 15th IFAC World Congress on Automatic Control, 2002, pp. 143 – 154.
[10]Gahinet, P.; Nemirovski, A.; Laub, A.; Chilali, M.: LMI control toolbox, (1995)
[11]Hsiao, F. H.; Hwang, J. D.: Fuzzy control of chaotic systems by dithers, Int. J. Theor. phys., group theory nonlinear opt. 10, No. 4, 387-414 (2004) · Zbl 1120.93333
[12]Lai, Y. M.; Tse, C. K.; Chow, M. H. L.: Control of bifurcation in current-programmed dc/dc converters: an alternative viewpoint of ramp compensation, Circuits syst. Signal process. 20, 695-707 (2001) · Zbl 0996.34038 · doi:10.1007/BF01270937
[13]Lasalle, J. P.: Some extensions of Lyapunov’s second method, IRE trans. Circuit theory, 520-527 (1960)
[14]Lee, H. J.; Park, J. B.; Chen, G.: Robust fuzzy control of nonlinear systems with parametric uncertainties, IEEE trans. Fuzzy syst. 9, 369-379 (2001)
[15]Liaw, Y. M.; Tung, P. C.: Application of the differential geometric method to control a noisy chaotic system via dither smoothing, Phys. lett. A 239, 51-58 (1998) · Zbl 0936.93028 · doi:10.1016/S0375-9601(97)00919-5
[16]Moon, F. C.; Reddy, A. J.; Holmes, W. T.: Experiments in control and anti-control of chaos in a dry friction oscillator, J. vibr. Control 9, 387-397 (2003)
[17]Morgül, Ö.: On the control of some chaotic systems by using dither, Phys. lett. A 262, 144-151 (1999) · Zbl 0939.34038 · doi:10.1016/S0375-9601(99)00652-0
[18]Mossaheb, S.: Application of a method of averaging to the study of dithers in nonlinear systems, Int. J. Control 38, 557-576 (1983) · Zbl 0522.93035 · doi:10.1080/00207178308933094
[19]Nelder, J. A.; Mead, R.: A simplex method for function minimization, Comput. J. 7, 308-313 (1965) · Zbl 0229.65053
[20]Nguang, S. K.; Shi, P.: Robust H output feedback control design for fuzzy dynamic systems with quadratic D stability constraints: an LMI approach, Inform. sci. 176, 2161-2191 (2006) · Zbl 1177.93055 · doi:10.1016/j.ins.2005.02.005
[21]Srivastava, K. N.; Srivastava, S. C.: Elimination of dynamic bifurcation and chaos in power systems using facts devices, IEEE trans. Circ. syst. I 45, 72-78 (1998) · Zbl 0914.58023 · doi:10.1109/81.660759
[22]Steinberg, A. M.; Kadushin, I.: Stabilization of nonlinear systems with dither control, J. math. Anal. appl. 43, 273-284 (1973) · Zbl 0275.93038 · doi:10.1016/0022-247X(73)90275-8
[23]Tanaka, K.; Ikeda, T.; Wang, H. O.: A unified approach to controlling chaos via an LMI-based fuzzy control system design, IEEE trans. Circuit syst. I 45, 1021-1040 (1998) · Zbl 0951.93046 · doi:10.1109/81.728857
[24]Tanaka, K.; Ikeda, T.; Wang, H. O.: Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs, IEEE trans. Fuzzy syst. 6, 250-265 (1998)
[25]Ting, C. S.: Stability analysis and design of Takagi – sugeno fuzzy systems, Inform. sci. 176, 2817-2845 (2006) · Zbl 1097.93023 · doi:10.1016/j.ins.2005.06.005
[26]Tong, S.; Li, H. H.: Observer-based robust fuzzy control of nonlinear systems with parametric uncertainties, Fuzzy sets syst. 131, 165-184 (2002) · Zbl 1010.93515 · doi:10.1016/S0165-0114(01)00216-0
[27]H.O. Wang, K. Tanaka, An LMI-based stable fuzzy control of nonlinear systems and its application to control of chaos, in: Proceedings of the Fifth IEEE International Conference on Fuzzy Systems, vol. 2, 1996, pp. 1433 – 1438.
[28]Xie, L.: Output feedback H control of systems with parameter uncertainties, Int. J. Control 63, 741-750 (1996) · Zbl 0841.93014 · doi:10.1080/00207179608921866
[29]Zhou, S.; Feng, G.; Lam, J.; Xu, S.: Robust H control for discrete-time fuzzy systems via basis-dependent Lyapunov functions, Inform. sci. 174, 197-217 (2005) · Zbl 1113.93038 · doi:10.1016/j.ins.2004.07.015
[30]H.E. Romeijn, Global optimization by random walk sampling methods, Ph.D. Thesis, Erasmus University Rotterdam, Rotterdam, The Netherlands, 1992.