zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Denseness of holomorphic functions attaining their numerical radii. (English) Zbl 1140.46007
For a complex Banach space X, let A (B X ;X) denote the space of bounded continuous functions h from B X ={xX:x1} to X which are holomorphic on {xX:x<1}. The numerical radius of h was first defined by L. A. Harris in [Am. J. Math. 93, 1005–1019 (1971; Zbl 0237.58010)] as the quantity sup{|x * (h(x))|:xX, x * X * , x * =-x=x * (x)=1}. h is said to attain its numerical radius if this supremum is attained for some x and x * . The present paper discusses when the subset of the numerical radius attaining elements in A (B X ;X) is dense in A (B X ;X). On the positive side, it is shown that this is the case when X has the Radon–Nikodým property. For some classical spaces without this property, there are also obtained some positive results. For example, the denseness of the numerical radius attaining elements in A (B c 0 ;c 0 ) follows from the previously known denseness of norm attaining elements. For K a compact Hausdorff topological space, the numerical radius attaining elements are shown to be dense in the space of bounded weakly uniformly continuous functions on B C(K) which are holomorphic on its interior. In the negative direction, the authors give an example of a certain Banach space (the pre-dual d * (ω,1) of the Lorentz space d(ω,1) for some ω in 2 1 )) for which the subset of the numerical radius attaining elements is not dense in the Banach space of all bounded holomorphic functions from the open subset {zd * (ω,1):z<R} (R>e) to d * (ω,1).

46B99Normed linear spaces and Banach spaces
46B22Radon-Nikodým, Kreĭn-Milman and related properties
[1]M. D. Acosta, Boundaries for spaces of holomorphic functions on C(K), Publications of the Research Institute for Mathematical Sciences 42 (2006), 27–44. · Zbl 1108.46034 · doi:10.2977/prims/1166642057
[2]M. D. Acosta, F. Aguirre and R. Payá, A space by W. Gowers and new results on norm and numerical radius attaining operators, Acta Univ. Carolin. Math. Phys 33 (1992), 5–14.
[3]M. D. Acosta, J. Alaminos, D. García and M. Maestre, On holomorphic functions attaining their norms, Journal of Mathematical Analysis and Applications 297 (2004), 625–644. · Zbl 1086.46034 · doi:10.1016/j.jmaa.2004.04.010
[4]M. D. Acosta and R. Payá, Numerical radius attaining operators and the Radon-Nikodym property, The Bulletin of the London Mathematical Society 25 (1993), 67–73. · Zbl 0789.47007 · doi:10.1112/blms/25.1.67
[5]Y. S. Choi, D. García, S. G. Kim and M. Maestre, Norm or numerical radius attaining polynomials on C(K), Journal of Mathematical Analysis and Applications 295 (2004), 80–96. · Zbl 1059.46026 · doi:10.1016/j.jmaa.2004.03.005
[6]Y. S. Choi and S. G. Kim, Norm or numerical radius attaining multilinear mappings and polynomials, Journal of the London Mathematical Society 54 (1996), 135–147.
[7]P. Harmand, D. Werner and W. Werner, M-ideals in Banach Spaces and Banach Algebras, Lecture Notes in Mathematics 1547, Springer-Verlag, Berlin, 1993.
[8]L. Harris, The numerical range of holomorphic functions in Banach spaces, American Jouranl of Mathematics 93 (1971), 1005–1119. · Zbl 0237.58010 · doi:10.2307/2373743
[9]J. Johnson and J. Wolfe, Norm attaining operators, Studia Mathematica 65 (1979), 7–19.
[10]J. Lindenstrauss, On operators which attain their norms, Israel Journal of Mathematics 1 (1963), 139–148. · Zbl 0127.06704 · doi:10.1007/BF02759700
[11]A. Moltó, V. Montesinos and S. Troyanski, On quasi-denting points, denting faces and the geometry of the unit ball of d(w, 1), Archiv der Mathematik 63 (1994), 45–55. · Zbl 0805.46020 · doi:10.1007/BF01196298
[12]J. Partington, Norm attaining operators, Israel Journal of Mathematics 43 (1982), 273–276. · Zbl 0507.46008 · doi:10.1007/BF02761947
[13]C. Stegall, Optimization and differentiation in Banach Spaces, Linear Algebra and its Applications 84 (1986), 191–211. · Zbl 0633.46042 · doi:10.1016/0024-3795(86)90314-9
[14]D. Werner, New classes of Banach spaces which are M-ideals in their biduals, Mathematical Proceedings of the Cambridge Philosophical Society 111 (1992), 337–354. · Zbl 0787.46020 · doi:10.1017/S0305004100075447