zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stabilization of linear systems over networks with bounded packet loss. (English) Zbl 1140.93383
Summary: This paper is concerned with the stabilization problem of networked control systems where the main focus is the packet-loss issue. Two types of packet-loss processes are considered. One is the arbitrary packet-loss process, the other is the Markovian packet-loss process. The stability conditions of networked control systems with both arbitrary and Markovian packet losses are established via a packet-loss dependent Lyapunov approach. The corresponding stabilizing controller design techniques are also given based upon the stability conditions. These results are also extended to the unit time delay case. Finally, the numerical example and simulations have demonstrated the usefulness of the developed theory.
93B52Feedback control
93D05Lyapunov and other classical stabilities of control systems
93C55Discrete-time control systems