zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fractional derivatives of products of Airy functions. (English) Zbl 1141.33002
In the present paper the author has investigated fractional derivatives of two products of Airy functions first kind and second kind. He has also proved the Wronskian W(x) of the system of integral of order half and its Hilbert transform W ¯(x)=-HW(x) are special functions. In the last he has established some integral relations. The work is good.
33C10Bessel and Airy functions, cylinder functions, 0 F 1
26A33Fractional derivatives and integrals (real functions)
[1]Ablowitz, M. J.; Clarkson, P. A.: Solitons, nonlinear evolution equations and inverse scattering, Lecture notes series 149 (1991) · Zbl 0762.35001
[2], Handbook of mathematical functions with formulas, graphs and mathematical tables (1964) · Zbl 0171.38503
[3]Aspnes, D. E.: Electric-field effects on optical absorption near thresholds in solids, Phys. rev. 147, 554-566 (1966)
[4]Aspnes, D. E.: Electric-field effects on the dielectric constant of solids, Phys. rev. 153, 972-982 (1967)
[5]Babich, V. M.; Buldyrev, V. S.: Short wavelength diffraction theory — asymptotic methods, Springer series on wave phenomena (1991) · Zbl 0742.35002
[6]Duoandikoetxea, J.: Fourier analysis, Graduate studies in mathematics 29 (2001)
[7]Jones, D. S.: High-frequency refraction and diffraction in general media, Philos. trans. R. soc. Lond. ser. A math. Phys. eng. Sci. 255, No. 1058, 341-387 (1963) · Zbl 0138.44201 · doi:10.1098/rsta.1963.0007
[8]Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.: Higher transcendental functions, vol. III, (1955) · Zbl 0064.06302
[9]Fock, V. A.: Electromagnetic diffraction and propagation problems, (1965)
[10]Kato, T.: On the Cauchy problem for the (generalized) Korteweg – de Vries equation, Studies in applied math., advances in math. Supplementary studies 8, 93-128 (1983) · Zbl 0549.34001
[11]Katznelson, Y.: An introduction to harmonic analysis, (1968) · Zbl 0169.17902
[12]Kenig, C.; Ponce, G.; Vega, L.: On the (generalized) Korteweg – de Vries equation, Duke math. J. 59, 585-610 (1989) · Zbl 0795.35105 · doi:10.1215/S0012-7094-89-05927-9
[13]Kenig, C.; Ponce, G.; Vega, L.: Well-posedness and scattering results for the generalized Korteweg – de Vries equation via the contraction principle, Comm. pure appl. Math. 46, No. 4, 527-620 (1993) · Zbl 0808.35128 · doi:10.1002/cpa.3160460405
[14]Kormilitsin, B. T.: Propagation of electromagnetic waves in a medium with permittivity &z.epsiv;(z)=&z.epsiv;0+&z.epsiv;1z incited by a filament-type source, Radiotekhnika i elektronika 11, No. 6, 1130-1134 (1966)
[15]Landau, L. D.; Lifshitz, E. M.: Quantum mechanics. Nonrelativistic theory, (1965) · Zbl 0178.57901
[16]Laurenzi, B. J.: Moment integrals of powers of Airy functions, Z. angew. Math. phys. 44, 891-908 (1993) · Zbl 0784.33003 · doi:10.1007/BF00942815
[17]Mainardi, F.; Pagnini, G.: The wright functions as solutions of the time-fractional diffusion equation, Appl. math. Comput. 141, 51-62 (2003) · Zbl 1053.35008 · doi:10.1016/S0096-3003(02)00320-X
[18]Miller, K. S.; Ross, B.: An introduction to the fractional calculus and fractional differential equations, (1993)
[19]Ostrovsky, L. A.: Nonlinear internal waves in a rotating ocean, Oceanology 18, 181-191 (1978)
[20]Ostrovsky, L. A.; Stepanyants, Yu.A.: Nonlinear surface and internal waves in rotating fluids, Research reports in physics, nonlinear waves 3 (1990) · Zbl 0719.76021
[21]Reid, W. H.: Integral representations for products of Airy functions, Z. angew. Math. phys. 46, 159-170 (1995) · Zbl 0824.33002 · doi:10.1007/BF00944750
[22]Reid, W. H.: Integral representations for products of Airy functions. Part 2. Cubic products, Z. angew. Math. phys. 48, 646-655 (1997) · Zbl 0874.33003 · doi:10.1007/PL00001481
[23]Reid, W. H.: Integral representations for products of Airy functions. Part 3. Quartic products, Z. angew. Math. phys. 48, 656-664 (1998) · Zbl 0874.33004 · doi:10.1007/PL00001482
[24]Stein, E. M.: Singular integrals and differentiability properties of functions, (1970) · Zbl 0207.13501
[25]Titchmarsh, E. C.: Introduction to the theory of Fourier integrals, (1962)
[26]Vallée, O.; Soares, M.: Airy functions and applications to physics, (2004)
[27]Vallée, O.; Soares, M.; De Izarra, C.: An integral representation for the product of Airy functions, Z. angew. Math. phys. 48, 156-160 (1997) · Zbl 0879.33002 · doi:10.1007/PL00001464
[28]Varlamov, V.; Liu, Y.: Cauchy problem for the Ostrovsky equation, Discrete contin. Dyn. syst. 10, No. 3, 731-753 (2004) · Zbl 1059.35035 · doi:10.3934/dcds.2004.10.731
[29]Varlamov, V.: Oscillatory integrals generated by the Ostrovsky equation, Z. angew. Math. phys. 56, 1-29 (2005) · Zbl 1108.35134 · doi:10.1007/s00033-005-4120-5
[30]V. Varlamov, Semi-integer derivatives of the Airy function and related properties of the Korteweg – de Vries-type equations, Z. Angew. Math. Phys., in press · Zbl 1155.35008 · doi:10.1007/s00033-007-6074-2
[31]Wolfram Functions Site, http://functions.wolfram.com/BesselAiryStruveFunctions/AiryAi/26