zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Convergent expansions for solutions of linear ordinary differential equations having a simple pole, with an application to associated Legendre functions. (English) Zbl 1141.34352
Summary: Second-order linear ordinary differential equations with a large parameter u are examined. Asymptotic expansions involving modified Bessel functions are applicable for the case where the coefficient function of the large parameter has a simple pole. In this paper, we examine such equations in the complex plane, and convert the asymptotic expansions into uniformly convergent series, where u appears in an inverse factorial, rather than an inverse power. Under certain mild conditions, the region of convergence containing the simple pole is unbounded. The theory is applied to obtain exact connection formulas for general solutions of the equation, and also, in a special case, to obtain convergent expansions for associated Legendre functions of complex argument and large degree.
MSC:
34M30Asymptotics, summation methods (ODE in the complex domain)
33C05Classical hypergeometric functions, 2 F 1
34M25Formal solutions, transform techniques (ODE in the complex domain)