zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stochastic optimal control of DC pension funds. (English) Zbl 1141.91439
Summary: We study the portfolio problem of a pension fund manager who wants to maximize the expected utility of the terminal wealth in a complete financial market with the stochastic interest rate. Using the method of stochastic optimal control, we derive a non-linear second-order partial differential equation for the value function. As it is difficult to find a closed form solution, we transform the primary problem into a dual one by applying a Legendre transform and dual theory, and try to find an explicit solution for the optimal investment strategy under the logarithm utility function. Finally, a numerical simulation is presented to characterize the dynamic behavior of the optimal portfolio strategy.
91B28Finance etc. (MSC2000)
93E99Stochastic systems and stochastic control
[1]Boulier, J. F.; Huang, S.; Taillard, G.: Optimal management under stochastic interest rates: the case of a protected defined contribution pension fund, Insurance: mathematics and economics 28, 173-189 (2001)
[2]Blomvall, J.; Lindberg, P. O.: Back-testing the performance of an actively managed option portfolio at the swedish stock market, 1990–1999, Journal of economic dynamic control 27, 1099-1112 (2003)
[3]Choulli, T.; Hurd, T. R.: The role of Hellinger process in mathematical finance, Entropy 3, 150-161 (2001) · Zbl 1015.91030 · doi:10.3390/e3030150 · doi:http://www.mdpi.org/entropy/list01.htm
[4]Cox, J. C.; Ingersoll, J.; Ross, S.: A theory of the term structure of interest rates, Econometrica 53, 385-408 (1985)
[5]Cox, J. C.; Huang, C. F.: Optimal consumption and portfolio policies when asset prices follow a diffusion process, Journal of economic theory 49, 33-83 (1989) · Zbl 0678.90011 · doi:10.1016/0022-0531(89)90067-7
[6]Cox, J.; Huang, C. F.: A variational problem arising in financial economics, Mathematics in economics 20, 16-17 (1991) · Zbl 0734.90009 · doi:10.1016/0304-4068(91)90004-D
[7]Devolder, P.; Bosch, P. M.; Dominguez, F. I.: Stochastic optimal control of annuity contracts, Insurance: mathematics and economics 33, No. 2, 227-238 (2003) · Zbl 1103.91346 · doi:10.1016/S0167-6687(03)00136-7
[8]Deelstra, G.; Grasselli, M.; Koehl, P. F.: Optimal investment strategies in the presence of a minimum guarantee, Insurance: mathematics and economics 33, 189-207 (2003) · Zbl 1074.91013 · doi:10.1016/S0167-6687(03)00153-7
[9]Deelstra, G.; Grasselli, M.; Koehl, P. F.: Optimal design of the guarantee for defined contribution funds, Journal of economic dynamics and control 28, 2239-2260 (2004) · Zbl 1202.91124 · doi:10.1016/j.jedc.2003.10.003
[10]Duffie, D.: Dynamic asset pricing theory, (2001)
[11]Hainaut, D.; Devolder, P.: A martingale approach applied to the management of life insurances, (2006)
[12]Jonsson, M.; Sircar, R.: Optimal investment problems and volatility homogenization approximations, NATO science series II 75, 255-281 (2002) · Zbl 1104.91302
[13]Haberman, S.; Vigna, E.: Optimal investment strategies and risk measures in defined contribution pension schemes, Insurance: mathematics and economics 31, 35-69 (2002) · Zbl 1039.91025 · doi:10.1016/S0167-6687(02)00128-2
[14]Kramkov, D.; Schachermayer, W.: The asymptotic elasticity of utility function and optimal investment in incomplete markets, The annals of applied probability 9, No. 3, 904-950 (1999) · Zbl 0967.91017 · doi:10.1214/aoap/1029962818
[15]Li, Y.: Growth-security investment strategy for long and short runs, Management science 39, 915-924 (1993) · Zbl 0785.90016 · doi:10.1287/mnsc.39.8.915
[16]Menoncin, F.; Scaillet, O.: Optimal asset management for pension funds, Managerial finance 32, No. 4, 347-374 (2006)
[17]Merton, R.: Lifetime portfolio selection under uncertainty: the continuous-time case, Review of economics and statistics 51, 247-257 (1969)
[18]Merton, R.: Optimum consumption and portfolio rules in a continuous-time model, Journal of economic theory 3, 373-413 (1971)
[19]Vasiček, O. E.: An equilibrium charcterisation of the term structure, Journal of finance economics 5, 177-188 (1977)
[20]Vigna, E.; Haberman, S.: Optimal investment strategy for defined contribution pension schemes, Insurance: mathematics and economics 28, 233-262 (2001) · Zbl 0976.91039 · doi:10.1016/S0167-6687(00)00077-9
[21]Xiao, J.; Zhai, H.; Qin, C.: The constant elasticity of variance (CEV) model and the Legendre transform-dual solution for annuity contracts, Insurance: mathematics and economics 40, 302-310 (2007) · Zbl 1141.91473 · doi:10.1016/j.insmatheco.2006.04.007