zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Synchronization of a class of chaotic signals via robust observer design. (English) Zbl 1141.93314
Summary: The signal synchronization of a class of chaotic systems based on robust observer design is tackled. The task is the synchronization of the signals generated by two Chen oscillators with different initial condition. The proposed observer is robust against model uncertainties and noisy output measurements. An alternative system representation is proposed to transform the measured disturbance onto system disturbance, which leads a more adequate observer structure. The proposed methodology contains an uncertainty estimator based on the predictive contribution to infer the unobservable uncertainties and corrective contribution to estimate the observable uncertainties; which provides robustness against noisy measurements and model uncertainties. Convergence analysis of the proposed estimation methodology is realized, analyzing the dynamic equation of the estimation error, where asymptotic convergence is shown. Numerical experiments illustrate the good performance of the proposed methodology.
93C41Control problems with incomplete information
94A12Signal theory (characterization, reconstruction, filtering, etc.)
93C15Control systems governed by ODE
93C10Nonlinear control systems