zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global stability of stochastic high-order neural networks with discrete and distributed delays. (English) Zbl 1141.93416
Summary: High-order neural networks can be considered as an expansion of Hopfield neural networks, and have stronger approximation property, faster convergence rate, greater storage capacity, and higher fault tolerance than lower-order neural networks. In this paper, the global asymptotic stability analysis problem is considered for a class of stochastic high-order neural networks with discrete and distributed time-delays. Based on an Lyapunov-Krasovskii functional and the stochastic stability analysis theory, several sufficient conditions are derived, which guarantee the global asymptotic convergence of the equilibrium point in the mean square. It is shown that the stochastic high-order delayed neural networks under consideration are globally asymptotically stable in the mean square if two linear matrix inequalities (LMIs) are feasible, where the feasibility of LMIs can be readily checked by the Matlab LMI toolbox. It is also shown that the main results in this paper cover some recently published works. A numerical example is given to demonstrate the usefulness of the proposed global stability criteria.
MSC:
93E15Stochastic stability
93D20Asymptotic stability of control systems
92B20General theory of neural networks (mathematical biology)