zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Persistence properties and unique continuation of solutions of the Camassa-Holm equation. (English) Zbl 1142.35078

The authors study the Camassa-Holm equation

u t -u txx +3uu x -2u x u xx -uu xxx =0,

which physically was derived as a shallow water equation admitting peaked solitons. They prove that, given a strong solution to the Cauchy problem for this equation such that the initial data u(x,0) decays exponentially together with the spatial derivative, if at some time t 1 >0 the solution u(x,t 1 ) decays exponentially in x then u is identically zero: u(x,t)0.

MSC:
35Q53KdV-like (Korteweg-de Vries) equations
35Q35PDEs in connection with fluid mechanics
35B60Continuation of solutions of PDE
References:
[1]Beals R., Sattinger D. and Szmigielski J. (2000). Multipeakons and the classical moment problem. Adv. Math. 154(2): 229–257 · Zbl 0968.35008 · doi:10.1006/aima.1999.1883
[2]Camassa R. and Holm D. (1993). An integrable shallow water equation with peaked solutions. Phys. Rev. Lett. 71: 1661–1664 · Zbl 0936.35153 · doi:10.1103/PhysRevLett.71.1661
[3]Constantin A. (2005). Finite propagation speed for the Camassa-Holm equation. J. Math. Phys. 46(2): 4 · Zbl 1076.35109 · doi:10.1063/1.1845603
[4]Constantin A. and Escher J. (1998). Global existence and blow-up for a shallow water equation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 26(2): 303–328
[5]Constantin A. and McKean H. (1999). A shallow water equation on the circle. Comm. Pure Appl. Math. 52: 949–982 · doi:10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D
[6]Constantin A. and Strauss W. (2000). Stability of peakons. Comm. Pure Appl. Math. 53: 603–610 · doi:10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L
[7]Danchin R. (2001). A few remarks on the Camassa-Holm equation. Differ. Int. Eqs. 14: 953–988
[8]De Lellis, C., Kappeler, T., Topalov, P.: Low-regularity solutions of the periodic Camassa-Holm equation. Comm. Partial Differential Equations (to appear) (2007)
[9]Escauriaza L., Kenig C.E., Ponce G. and Vega L. (2006). On unique continuation of solutions of Schrödinger equations. Comm. PDE 31: 1811–1823 · Zbl 1124.35068 · doi:10.1080/03605300500530446
[10]Escauriaza, L., Kenig, C. E., Ponce, G., Vega, L.: On uniqueness properties of solutions of the k-generalized KdV equations. J. Funct. Anal. (to appear) (2006)
[11]Fuchssteiner B. and Fokas A. (1981/1982). Symplectic structures, their Backlund transformations and hereditary symmetries. Phys. D 4: 47–66 · Zbl 1194.37114 · doi:10.1016/0167-2789(81)90004-X
[12]Fuchssteiner B. (1996). Some tricks from the symmetry-toolbox for nonlinear equations: generalization of the Camassa-Holm equation. Physica D 95: 229–243 · Zbl 0900.35345 · doi:10.1016/0167-2789(96)00048-6
[13]Henry D. (2005). Compactly supported solutions of the Camassa-Holm equation. J. Nonlinear Math. Phys. 12: 342–347 · Zbl 1086.35079 · doi:10.2991/jnmp.2005.12.3.3
[14]Himonas A. and Misiołek G. (2001). The Cauchy problem for an integrable shallow water equation. Differ. Int. Eqs. 14: 821–831
[15]Himonas A. and Misiołek G. (2005). High-frequency smooth solutions and well-posedness of the Camassa-Holm equation. Int. Math. Res. Not. 51: 3135–3151 · Zbl 1092.35085 · doi:10.1155/IMRN.2005.3135
[16]Li Y. and Olver P. (2000). Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation. J. Differ. Eqs. 162: 27–63 · Zbl 0958.35119 · doi:10.1006/jdeq.1999.3683
[17]McKean H. (2004). Breakdown of the Camassa-Holm equation. Comm. Pure Appl. Math. 57: 416–418 · Zbl 1052.35130 · doi:10.1002/cpa.20003
[18]McKean H. (1998). Breakdown of a shallow water equation. Asian J. Math. 2: 767–774
[19]Misiołek G. (2002). Classical solutions of the periodic Camassa-Holm equation. Geom. Funct. Anal. 12: 1080–1104 · Zbl 1158.37311 · doi:10.1007/PL00012648
[20]Molinet L. (2004). On well-posedness results for the Camassa-Holm equation on the line: A survey. J. Nonlin. Math. Phys. 11: 521–533 · Zbl 1069.35076 · doi:10.2991/jnmp.2004.11.4.8
[21]Rodriguez-Blanco G. (2001). On the Cauchy problem for the Camassa-Holm equation. Nonlinear Anal. 46: 309–327 · Zbl 0980.35150 · doi:10.1016/S0362-546X(01)00791-X
[22]Zhou, Y.: Infinite propagation speed for a shallow water equation. Preprint, available at http://www.fim.math.ethz.ch/preprints/2005/zhou.pdf, 2005