zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Comparison of some recent numerical methods for initial-value problems for stiff ordinary differential equations. (English) Zbl 1142.65054

Summary: We consider the combustion equation as one of the candidates from the class of stiff ordinary differential equations. A solution over a length of time that is inversely proportional to δ>0 (where δ>0 is a small disturbance of the pre-ignition state) is sought. This problem has a transient at the midpoint of the integration interval. The solution changes from being non-stiff to stiff, and afterwards becomes non-stiff again. We provide its asymptotic and numerical solution obtained via a variety of methods.

Comparisons are made for the numerical results which we obtain with the MATLAB ode solvers (ODE45, ODE15s and ODE23s) and some nonstandard finite difference methods. Results corresponding to standard finite difference method are also presented. Furthermore, the discussion on these approaches along with the others, provides several open problems for new and young researchers.

65L05Initial value problems for ODE (numerical methods)
34A34Nonlinear ODE and systems, general
65L12Finite difference methods for ODE (numerical methods)
80A25Combustion, interior ballistics
[1]The Math Works, Inc.: http://www.mathworks.com
[2]Reiss, E. L.: A new asymptotic method for jump phenomena, SIAM J. Appl. math. 39, 440-455 (1980) · Zbl 0444.34054 · doi:10.1137/0139037
[3]Enright, W. H.; Hull, T. E.; Lindberg, B.: Comparing numerical methods for stiff systems of odes, Bit 15, No. 1, 10-48 (1975) · Zbl 0301.65040 · doi:10.1007/BF01932994
[4]Kassoy, D. R.: A note on asymptotic methods for jump phenomena, SIAM J. Appl. math. 42, 926-932 (1982) · Zbl 0518.34050 · doi:10.1137/0142065
[5]Brugnano, L.; Trigiante, D.: Boundary value methods: the third way between linear multistep and Runge–Kutta methods, Comput. math. Appl. 36, No. 10–12, 269-284 (1998) · Zbl 0933.65082 · doi:10.1016/S0898-1221(98)80028-X
[6]Iavernaro, F.; Mazzia, F.: Solving ordinary differential equations by generalized Adams methods: properties and implementation techniques, Appl. numer. Math. 28, 107-126 (1998) · Zbl 0926.65076 · doi:10.1016/S0168-9274(98)00039-7
[7]Iavernaro, F.; Mazzia, F.: Block-boundary value methods for the solution of ordinary differential equation, SIAM J. Sci. comput. 21, No. 1, 323-339 (1999) · Zbl 0941.65067 · doi:10.1137/S1064827597325785
[8]Hsiao, C. H.: Numerical solution of stiff differential equations via harr wavelets, Int. J. Comput. math. 82, No. 9, 1117-1123 (2005) · Zbl 1075.65098 · doi:10.1080/00207160512331323308
[9]Jannelli, A.; Fazio, R.: Adaptive stiff solvers at low accuracy and complexity, J. comput. Appl. math. 191, 246-258 (2006) · Zbl 1089.65061 · doi:10.1016/j.cam.2005.06.041
[10], Stiff computation (1985)
[11]Day, J. D.: A minimum configuration L-stable fourth-order non-autonomous rosenbrock method for stiff differential equations, Commun. appl. Numer. methods 1, No. 6, 293-297 (2005) · Zbl 0591.65049 · doi:10.1002/cnm.1630010607
[12]Gear, C. W.: Numerical initial value problems in ordinary differential equations, (1971) · Zbl 1145.65316
[13]Kaps, P.; Rentrop, P.: Generalized Runge–Kutta methods of order four with stepsize control for stiff ordinary differential equations, Numer. math. 33, No. 1, 55-68 (1979) · Zbl 0436.65047 · doi:10.1007/BF01396495
[14]Kaps, P.; Poon, S. W. H.; Bui, T. D.: Rosenbrock methods for stiff odes: A comparison of Richardson extrapolation and embedding technique, Computing 34, No. 1, 17-40 (1985) · Zbl 0554.65054 · doi:10.1007/BF02242171
[15]Shampine, L. F.: Evaluation of a test set for stiff ODE solvers, ACM trans. Math. software 7, 409-420 (1981)
[16]Shampine, L. F.; Baca, L. S.: Error estimators for stiff differential equations, J. comput. Appl. math. 11, 197-207 (1984) · Zbl 0556.65065 · doi:10.1016/0377-0427(84)90020-7
[17]Shampine, L. F.: Numerical solution of ordinary differential equations, (1994) · Zbl 0832.65063
[18]Ueberhuber, C. W.: Implementation of defect correction methods for stiff differential equations, Computing 23, No. 3, 205-232 (1979) · Zbl 0423.65042 · doi:10.1007/BF02252129
[19]Anguelov, R.; Lubuma, J. M. -S.: Nonstandard finite difference method by nonlocal approximation, Math. comput. Simul. 61, No. 3–6, 465-475 (2003) · Zbl 1015.65034 · doi:10.1016/S0378-4754(02)00106-4
[20], Applications of nonstandard finite difference schemes (2000)
[21]Mickens, R. E.: Nonstandard finite difference models of differential equations, (1994) · Zbl 0810.65083
[22]Patidar, K. C.: On the use of nonstandard finite difference methods, J. difference eq. Appl. 11, 735-758 (2005) · Zbl 1073.65545 · doi:10.1080/10236190500127471
[23]Miranker, W. L.: Numerical methods for stiff equations and singular perturbation problems, (1981) · Zbl 0457.65064 · doi:10.1137/0718019
[24]O’malley, R. E.: Singular perturbation methods for ordinary differential equations, (1991) · Zbl 0743.34059
[25]Corless, R. M.; Gonnet, G. H.; Hare, D. E. G.; Jeffrey, D. J.; Knuth, D. E.: On the Lambert W function, Adv. comput. Math. 5, 329-359 (1996)
[26]Dormand, J. R.; Prince, P. J.: A family of embedded Runge–Kutta formulae, J. comput. Appl. math. 6, 19-26 (1980) · Zbl 0448.65045 · doi:10.1016/0771-050X(80)90013-3
[27]Shampine, L. F.; Reichelt, M. W.: The Matlab ODE suite, SIAM J. Sci. comput. 18, 1-22 (1997) · Zbl 0868.65040 · doi:10.1137/S1064827594276424
[28]Shampine, L. F.; Reichelt, M. W.; Kierzenka, J. A.: Solving index-1 daes in Matlab and simulink, SIAM rev. 41, 538-552 (1999) · Zbl 0935.65082 · doi:10.1137/S003614459933425X
[29]Gumel, A. B.; Patidar, K. C.; Spiteri, R. J.: Asymptotically consistent non-standard finite-difference methods for solving mathematical models arising in population biology, Advances in the applications of nonstandard finite difference schemes, 385-421 (2005) · Zbl 1086.65080
[30]Gottlieb, S.; Shu, C. W.: Total variation diminishing Runge–Kutta schemes, Math. comp. 67, No. 221, 73-85 (1998) · Zbl 0897.65058 · doi:10.1090/S0025-5718-98-00913-2
[31]Shu, C. W.; Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. comput. Phys. 77, No. 2, 439-471 (1988) · Zbl 0653.65072 · doi:10.1016/0021-9991(88)90177-5
[32]Ferracina, L.; Spijker, M. N.: Step-size restrictions for the total-variation-diminishing property in general Runge–Kutta methods, SIAM J. Numer. anal. 42, No. 3, 1073-1093 (2004) · Zbl 1080.65087 · doi:10.1137/S0036142902415584
[33]Lubuma, J. M. -S.; Patidar, K. C.: Contributions to the theory of non-standard finite difference methods and applications to singular perturbation problems, Advances in the applications of nonstandard finite difference schemes, 513-560 (2005) · Zbl 1085.65070
[34]Patidar, K. C.; Sharma, K. K.: ϵ-uniformly convergent nonstandard finite difference methods for singularly perturbed differential difference equations with small delay, Appl. math. Comput. 175, No. 1, 864-890 (2006) · Zbl 1096.65071 · doi:10.1016/j.amc.2005.08.006
[35]Patidar, K. C.; Sharma, K. K.: Uniformly convergent nonstandard finite difference methods for singularly perturbed differential difference equations with delay and advance, Internat. J. Numer. methods engrg. 66, No. 2, 272-296 (2006) · Zbl 1123.65078 · doi:10.1002/nme.1555