×

On the variational iteration method and other iterative techniques for nonlinear differential equations. (English) Zbl 1142.65082

Summary: A variety of iterative methods for the solution of initial- and/or boundary-value problems in ordinary and partial differential equations is presented. These iterative procedures provide the solution or an approximation to it as a sequence of iterates.
For initial-value problems, it is shown that these iterative procedures can be written in either an integral or differential form. The integral form is governed by a Volterra integral equation, whereas the differential one can be obtained from the Volterra representation by simply differentiation. It is also shown that integration by parts, variation of parameters, adjoint operators, Green’s functions and the method of weighted residuals provide the same Volterra integral equation and that this equation, in turn, can be written as that of the variational iteration method. It is, therefore, shown that the variational iteration method is nothing else by the Picard-Lindelof theory for initial-value problems in ordinary differential equations and Banach’s fixed-point theory for initial-value problems in partial differential equations, and the convergence of these iterative procedures is ensured provided that the resulting mapping is Lipschitz continuous and contractive. It is also shown that some of the iterative methods for initial-value problems presented here are special cases of the Bellman-Kalaba quasilinearization technique provided that the nonlinearities are differentiable with respect to the dependent variable and its derivatives, but such a condition is not required by the techniques presented in this paper.
For boundary-value problems, it is shown that one may use the iterative procedures developed for initial-value problems but the resulting iterates may not satisfy the boundary conditions, and two new iterative methods governed by Fredholm integral equations are proposed. It is shown that the resulting iterates satisfy the boundary conditions if the first one does so. The iterative integral formulation presented here is applied to ten nonlinear oscillators with odd nonlinearities and it is shown that its results coincide with those of (differential) two- and three-level iterative techniques, harmonic balance procedures and standard and modified Linstedt-Poincaré techniques. The method is also applied to two boundary-value problems.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35G25 Initial value problems for nonlinear higher-order PDEs
35G30 Boundary value problems for nonlinear higher-order PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Kevorkian, J.; Cole, J. D., Multiple Scale and Singular Perturbation Methods (1996), Springer-Verlag: Springer-Verlag New York · Zbl 0846.34001
[2] Nayfeh, A. H., Perturbation Methods (1973), John Wiley & Sons: John Wiley & Sons New York · Zbl 0375.35005
[3] Nayfeh, A. H.; Mook, D. T., Nonlinear Oscillations (1979), John Wiley & Sons: John Wiley & Sons New York
[4] He, Ji-H., A new approach to nonlinear partial differential equations, Commun. Nonlinear Sci. Numer. Simul., 2, 230-235 (1997)
[5] He, Ji-H., Variational iteration method – a kind of non-linear analytical technique: some examples, Int. J. Non-Linear Mech., 34, 699-708 (1999) · Zbl 1342.34005
[6] He, Ji-H., Some asymptotic methods for strongly nonlinear equations, Int. J. Modern Phys., 20, 1141-1199 (2006) · Zbl 1102.34039
[7] Adomian, G., Stochastic Systems (1983), Academic Press Inc.: Academic Press Inc. New York · Zbl 0504.60067
[8] Adomian, G., Nonlinear Stochastic Operator Equations (1986), Academic Press Inc.: Academic Press Inc. New York · Zbl 0614.35013
[9] Adomian, G., Solving Frontier Problems of Physics: The Decomposition Method (1994), Kluwer: Kluwer Boston · Zbl 0802.65122
[10] He, Ji-H., Homotopy perturbation method: a new nonlinear analytical technique, Appl. Math. Comput., 135, 73-79 (2003) · Zbl 1030.34013
[11] He, Ji-H., Addendum: new interpretation of homotopy perturbation method, Int. J. Modern Phys., 20, 2561-2568 (2006)
[12] He, Ji-H., Homotopy perturbation technique, Comput. Meth. Appl. Mech. Eng., 178, 257-262 (1999) · Zbl 0956.70017
[13] Liao, S.-J., An analytic approximate technique for free oscillations of positively damped systems with algebraically decaying amplitude, Int. J. Nonlinear Mech., 38, 1173-1183 (2003) · Zbl 1348.74225
[14] Liao, S. J., Beyond Perturbation (2003), CRC Press: CRC Press Boca Raton, FL
[15] He, J.-H., Modified Linstedt-Poincare methods for some non-linear oscillations. Part I: expansion of constant, J. Non-linear Mech., 37, 309-314 (2002)
[16] Öziş, T.; Yıldırım, A., Determination of periodic solution of a \(u^{1/3}\) force by He’s modified Linstedt-Poincaré method, J. Sound Vibr., 301, 415-419 (2007) · Zbl 1242.70044
[17] Bender, C. M.; Milton, K. A.; Pinsky, S. S.; Simmons, L. M., A new perturbative approach to nonlinear problems, J. Math. Phys., 30, 1447-1455 (1989) · Zbl 0684.34008
[18] J.I. Ramos, On Linstedt-Poincaré techniques for the quintic Duffing equation, Appl. Math. Comput., in press, doi:10.1016/j.amc.2007.03.050; J.I. Ramos, On Linstedt-Poincaré techniques for the quintic Duffing equation, Appl. Math. Comput., in press, doi:10.1016/j.amc.2007.03.050 · Zbl 1193.65142
[19] Mickens, R. E., Iteration procedure for determining approximate solutions to non-linear oscillator equations, J. Sound Vibr., 116, 185-187 (1987) · Zbl 1235.70006
[20] Hu, H.; Tang, J. H., A classical iteration procedure valid for certain strongly nonlinear oscillators, J. Sound Vibr., 299, 397-402 (2007) · Zbl 1241.70032
[21] Hu, H.; Tang, J. H., A convolution integral method for certain strongly nonlinear oscillators, J. Sound Vibr., 285, 1235-1241 (2005) · Zbl 1238.34068
[22] Mickens, R. E., A generalized iteration procedure for calculating approximations to periodic solutions of “truly nonlinear oscillators”, J. Sound Vibr., 287, 1045-1051 (2005) · Zbl 1243.65079
[23] Lim, C. W.; Wu, B. S., A modified Mickens procedure for certain non-linear oscillators, J. Sound Vibr., 257, 202-206 (2002) · Zbl 1237.70109
[24] Mickens, R. E., Iteration method solutions for conservative and limit-cycle \(x^{1/3}\) force oscillators, J. Sound Vibr., 292, 964-968 (2006) · Zbl 1243.34051
[25] Hu, H., Solutions of nonlinear oscillators with fractional powers by an iterative procedure, J. Sound Vibr., 294, 608-614 (2006) · Zbl 1243.34005
[26] Marinca, V.; Herinasu, N., A modified iteration perturbation method for some nonlinear oscillation problems, Acta Mech., 184, 142-231 (2006) · Zbl 1106.70014
[27] Wu, B. S.; Sun, W. P.; Lim, C. W., An analytical approximate technique for a class of strongly non-linear oscillators, Int. J. Non-linear Mech., 41, 766-774 (2006) · Zbl 1160.70340
[28] Wu, B. S.; Lim, C. W.; Ma, Y. F., Analytical approximation to large-amplitude oscillation of a non-linear conservative system, Int. J. Non-linear Mech., 38, 1037-1043 (2003) · Zbl 1348.34075
[29] Wu, B. S.; Lim, C. W., Large amplitude non-linear oscillations of a general conservative system, Int. J. Non-linear Mech., 39, 859-870 (2004) · Zbl 1348.34074
[30] Wu, B.; Li, P., A method for obtaining approximate analytic periods for a class of nonlinear oscillators, Meccanica, 36, 167-176 (2001) · Zbl 1008.70016
[31] J.I. Ramos, Series approach to the Lane-Emden equation and comparison with the homotopy perturbation method, Chaos Solitons Frac., in press.; J.I. Ramos, Series approach to the Lane-Emden equation and comparison with the homotopy perturbation method, Chaos Solitons Frac., in press. · Zbl 1146.34300
[32] Bellman, R.; Kalaba, R., Quasilinearization and Nonlinear Boundary Value Problems (1965), American Elsevier: American Elsevier New York · Zbl 0139.10702
[33] Lakshmikantham, V.; Vatsala, A. S., Generalized Quasilinearization for Nonlinear Problems (1998), Kluwer Academic: Kluwer Academic Boston · Zbl 0997.34501
[34] Mandelzweig, V. B.; Tabakin, F., Quasilinearization approach to nonlinear problems in physics with application to nonlinear ODEs, Comput. Phys. Commun., 141, 268-281 (2001) · Zbl 0991.65065
[35] Krivec, R.; Mandelzweig, V. B., Numerical investigation of quasilinearization method in quantum mechanics, Comput. Phys. Commun., 138, 69-79 (2001) · Zbl 0984.81173
[36] Mandelzweig, V. B., Comparison of quasilinear and WKB approximations, Ann. Phys., 321, 2810-2829 (2006) · Zbl 1105.81037
[37] Goldstein, Herbert, Classical Mechanics (1980), Addison-Wesley Publishing Company: Addison-Wesley Publishing Company Reading, MA · Zbl 0491.70001
[38] Lanczos, C., The Variational Principles of Mechanics (1986), Dover Publications Inc.: Dover Publications Inc. New York · Zbl 0138.19705
[39] Gelfand, I. M.; Fomin, S. V., Calculus of Variations (1963), Prentice-Hall Inc.: Prentice-Hall Inc. Englewood Cliffs, NJ · Zbl 0127.05402
[40] Bolza, O., Lectures on the Calculus of Variations (1973), Chelsea Publishing Company: Chelsea Publishing Company New York · JFM 35.0373.01
[41] Mura, T.; Koya, T., Variational Methods in Mechanics (1992), Oxford University Press: Oxford University Press New York · Zbl 0792.73002
[42] Amore, P.; Aranda, A., Improved Linstedt-Poicaré method for the solution of nonlinear problems, J. Sound Vibr., 283, 1115-1136 (2005) · Zbl 1237.70097
[43] Amore, P.; Lamas, H. M., High order analysis of nonlinear periodic differential equations, Phys. Lett. A, 327, 158-166 (2004) · Zbl 1138.34318
[44] Amore, P.; Aranda, A., Presenting a new method for the solution of nonlinear problems, Phys. Lett. A, 316, 218-225 (2003) · Zbl 1034.34010
[45] Amore, P.; Sanchez, N. E., Development of accurate solutions for a classical oscillator, J. Sound Vibr., 283, 345-351 (2007) · Zbl 1241.70030
[46] Amore, P.; Raya, A.; Fernández, F. M., Comparison of alternative improved perturbative methods for nonlinear oscillations, Phys. Lett. A, 340, 201-208 (2005) · Zbl 1145.70323
[47] Pelster, A.; Kleinert, H.; Schanz, M., High-order variational calculation for the frequency of time-periodic solutions, Phys. Rev. E, 67, 016604-1/6 (2003)
[48] Senator, M.; Bapat, C. N., A perturbation technique that works even when the non-linearity is not small, J. Sound Vibr., 164, 1-27 (1993) · Zbl 0925.70293
[49] Wu, B. S.; Lim, C. W.; Li, P. S., A generalization of the Senator-Bapat method for certain strongly nonlinear oscillators, Phys. Lett. A, 341, 164-169 (2005)
[50] He, Ji-H., Variational approach to the Lane-Emden equation, Appl. Math. Comput., 143, 539-541 (2003) · Zbl 1022.65076
[51] He, Ji-H., Variational approach to the sixth-order boundary value problems, Appl. Math. Comput., 143, 537-538 (2003) · Zbl 1025.65043
[52] He, Ji-H., Variational approach to the Thomas-Fermi equation, Appl. Math. Comput., 143, 533-535 (2003) · Zbl 1022.65083
[53] He, Ji-H., A Lagrangian for von Karman equations of large deflection problem of thin circular plate, Appl. Math. Comput., 143, 543-549 (2003) · Zbl 1038.74029
[54] Kaup, D. J.; Vogel, T. K., Quantitative measurement of variational approximations, Phys. Lett. A, 362, 289-297 (2007) · Zbl 1197.49051
[55] Desaix, M.; Anderson, D.; Lisak, M., Accuracy of an approximate variational solution procedure for the nonlinear Schrödinger equation, Phys. Rev. A, 40, 2441-2445 (1989)
[56] Momani, S.; Odibat, Z., Numerical comparison of methods for solving linear differential equations of fractional order, Chaos Solitons Fract., 31, 1248-1255 (2007) · Zbl 1137.65450
[57] Abdou, M. A.; Soliman, A. A., New applications of variational iteration method, Physica D, 211, 1-8 (2005) · Zbl 1084.35539
[58] Abdou, M. A.; Soliman, A. A., Variational iteration method for solving Burger’s and coupled Burger’s equations, J. Comput. Appl. Math., 181, 245-251 (2005) · Zbl 1072.65127
[59] He, Ji-H.; Wu, Xu-H., Construction of solitary solution and compacton-like solution by variational iteration method, Chaos Solitons Fract., 29, 108-113 (2006) · Zbl 1147.35338
[60] Abulwafa, E. M.; Abdou, M. A.; Mahmoud, A. A., The solution of nonlinear coagulation problem with mass loss, Chaos Solitons Fract., 29, 313-330 (2006) · Zbl 1101.82018
[61] Soliman, A. A., A numerical simulation and explicit solutions of KdV-Burgers’ and Lax’s seventh-order KdV equations, Chaos Solitons Fract., 29, 294-302 (2006) · Zbl 1099.35521
[62] He, Ji-H., Variational theory for one-dimensional longitudinal beam dynamics, Phys. Lett. A, 352, 276-277 (2006) · Zbl 1187.74108
[63] Inc, M., Exact and numerical solitons with compact support for nonlinear \(K(m,p)\) equations by the variational iteration method, Physica A, 375, 447-456 (2007)
[64] He, Ji-H., Variational iteration method for autonomous differential equations, Appl. Math. Comput., 114, 115-123 (2000) · Zbl 1027.34009
[65] Sweilam, M. H.; Khader, M. M., Variational iteration method for one-dimensional nonlinear elasticity, Chaos Solitons Fract., 32, 145-149 (2007) · Zbl 1131.74018
[66] Momani, S.; Abuasad, S., Application of He’s variational iteration method to Helmholtz equation, Chaos Solitons Fract., 27, 1119-1123 (2006) · Zbl 1086.65113
[67] Inokuti, M.; Sekine, H.; Mura, T., General use of the Lagrange multiplier in nonlinear mathematical physics, (Nemat-Nasser, S., Variational Methods in the Mechanics of Solids (1978), Pergamon Press: Pergamon Press New York), 156-162
[68] Reed, M.; Simon, B., Methods of Modern Mathematical Physics, I: Functional Analysis (1980), Academic Press: Academic Press New York
[69] Hartman, P., Ordinary Differential Equations (1964), John Wiley & Sons: John Wiley & Sons New York · Zbl 0125.32102
[70] Kelley, W.; Petterson, A., The Theory of Differential Equations: Classical and Qualitative (2004), Pearson Education Inc.: Pearson Education Inc. Upper Saddle River, NJ
[71] Lovitt, W. V., Linear Integral Equations (1950), Dover Publications Inc.: Dover Publications Inc. New York · JFM 50.0290.05
[72] Tricomi, F. G., Integral Equations (1985), Dover Publications Inc.: Dover Publications Inc. New York
[73] Delves, L. M.; Mohamed, J. L., Computational Methods for Integral Equations (1985), Cambridge University Press: Cambridge University Press New York · Zbl 0592.65093
[74] Porter, D.; Stirling, D. S.G., Integral Equations (1990), Cambridge University Press: Cambridge University Press New York · Zbl 0908.45001
[75] Tatari, M.; Dehgham, M., On the convergence of He’s variational iteration method, J. Comput. Appl. Math., 207, 201-208 (2007)
[76] Mickens, R. E., Oscillations in a \(x^{4/3}\) potential, J. Sound Vibr., 246, 375-378 (2001) · Zbl 1237.34044
[77] Mickens, R. E., Analysis of nonlinear oscillations in systems having non-polynomial elastic terms, J. Sound Vibr., 255, 789-792 (2002) · Zbl 1237.34065
[78] Hu, H., A modified method of equivalent linearization that works even when the non-linearity is not small, J. Sound Vibr., 276, 1145-1149 (2004) · Zbl 1236.34018
[79] Xu, L., He’s parameter-expanding methods for strongly nonlinear oscillators, J. Comput. Appl. Math., 207, 148-154 (2007) · Zbl 1120.65084
[80] Hu, H., A classical perturbation technique that works even when the linear part of restoring force is zero, J. Sound Vibr., 271, 1175-1179 (2004) · Zbl 1236.34082
[81] Mickens, R. E., Mathematical and numerical study of the Duffing-harmonic oscillator, J. Sound Vibr., 244, 563-567 (2001) · Zbl 1237.65082
[82] Hu, H.; Tang, J. H., Solution of a Duffing-harmonic oscillator by the method of harmonic balance, J. Sound Vibr., 294, 637-639 (2006) · Zbl 1243.34049
[83] Tiwari, S. B.; Rao, B. N.; Swamy, N. S.; Sai, K. S.; Nataraja, H. R., Analytical study on a Duffing-harmonic oscillator, J. Sound Vibr., 285, 1217-1222 (2005) · Zbl 1238.34070
[84] Hu, H., Solutions of the Duffing-harmonic oscillator by an iteration procedure, J. Sound Vibr., 298, 446-452 (2006) · Zbl 1243.65100
[85] Lim, C. W.; Wu, B. S., A new analytical approach to the Duffing-harmonic oscillator, Phys. Lett. A, 311, 365-373 (2003) · Zbl 1055.70009
[86] Lim, C. W.; Wu, B. S.; Sun, W. P., Higher accuracy analytical approximations to the Duffing oscillator, J. Sound Vibr., 296, 1039-1045 (2006) · Zbl 1243.34021
[87] Hu, H.; Xiong, Z. G., Comparison of two Linstedt-Poincaré-type perturbation methods, J. Sound Vibr., 278, 437-444 (2004) · Zbl 1236.34050
[88] Liu, H.-M., Approximate period of nonlinear oscillators with discontinuities by modified Linstedt-Poincaré method, Chaos Solitons Fract., 23, 577-579 (2005) · Zbl 1078.34509
[89] Beatty, J.; Mickens, R. E., A qualitative study of the solutions to the differential equation \(\ddot{x} +(1 + \dot{x}^2) x = 0\), J. Sound Vibr., 283, 475-477 (2005) · Zbl 1237.34040
[90] Mickens, R. E., Investigation of the properties of the period for the nonlinear oscillator \(\ddot{x} +(1 + \dot{x}^2) x = 0\), J. Sound Vibr., 292, 1031-1035 (2006) · Zbl 1243.34052
[91] Chatterjee, A., Harmonic balance based averaging: approximate realization of an asymptotic technique, Nonlinear Dyn., 32, 323-343 (2003) · Zbl 1042.70017
[92] Beléndez, A.; Hernández, A.; Beléndez, T.; Neipp, C.; Márquez, A., Asymptotic representations of the period for the nonlinear oscillator, J. Sound Vibr., 299, 403-408 (2007) · Zbl 1241.70031
[93] Beléndez, A.; Hernández, A.; Beléndez, T.; Neipp, C.; Márquez, A., Erratum to A qualitative study of the solutions to the differential equation \(\ddot{x} +(1 + \dot{x}^2) x = 0''\), J. Sound Vibr., 301, 427 (2007) · Zbl 1242.70040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.