zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Some coincidence theorems and stability of iterative procedures. (English) Zbl 1142.65360
Summary: The purpose of this paper is to obtain coincidence theorems and study the problem of stability of iterations for solving coincidence equations on a general setting. Several special cases are discussed.
MSC:
65J15Equations with nonlinear operators (numerical methods)
References:
[1]Singh, S. L.: A new approach in numerical praxis, Progr. math. (Varanasi) 32, No. 2, 75-89 (1998) · Zbl 1188.65077
[2]Singh, S. L.; Bhatnagar, Charu; Mishra, S. N.: Stability of jungck-type iterative procedures, Int. J. Math. math. Sci. 19, 3035-3043 (2005) · Zbl 1117.26005 · doi:10.1155/IJMMS.2005.3035
[3]Singh, S. L.; Mishra, S. N.: Fixed point theorems in a locally convex space, Quaest. math. 19, No. 3–4, 505-515 (1996) · Zbl 0867.47042 · doi:10.1080/16073606.1996.9631993
[4]Jungck, G.: Commuting mappings and fixed points, Amer. math. Monthly 83, 261-263 (1976) · Zbl 0321.54025 · doi:10.2307/2318216
[5]Jungck, G.: Common fixed points for commuting and compatible maps on compacta, Proc. amer. Math. soc. 103, 977-983 (1988) · Zbl 0661.54043 · doi:10.2307/2046888
[6]Ostrowski, A. M.: The round-off stability of iterations, Z. angew. Math. mech. 47, 77-81 (1967) · Zbl 0149.36601 · doi:10.1002/zamm.19670470202
[7]Harder, A. M.; Hicks, T. L.: A stable iteration procedure for non-expansive mappings, Math. japon. 33, 687-692 (1988) · Zbl 0655.47046
[8]Harder, A. M.; Hicks, T. L.: Stability results for fixed point iteration procedures, Math. japon. 33, 693-706 (1988) · Zbl 0655.47045
[9]Rhoades, B. E.: Fixed point theorems and stability results for fixed point iteration procedures, Indian J. Pure appl. Math. 21, 1-9 (1990) · Zbl 0692.54027
[10]Rhoades, B. E.: Fixed point theorems and stability results for fixed point iteration procedures-II, Indian J. Pure appl. Math. 24, 697-703 (1993) · Zbl 0794.54048
[11]Rhoades, B. E.; Saliga, L.: Some fixed point iteration procedures II, Nonlinear anal. Forum 6, No. 1, 193-217 (2001) · Zbl 0995.47032
[12]Osilike, M. O.: A stable iteration procedure for quasi-contractive maps, Indian J. Pure appl. Math. 27, No. 1, 25-34 (1996) · Zbl 0847.47042
[13]Osilike, M. O.: Stability results for fixed point iteration procedure, J. nigerian math. Soc. 14, 17-27 (1995)
[14]Berinde, Vasile: Iterative approximation of fixed points, (2002) · Zbl 1034.47038
[15]Czerwik, Stefan; Dlutek, Krzysztof; Singh, S. L.: Round-off stability of iteration procedures for operators in b-metric spaces, J. natur. Phys. sci. 11, 87-94 (1997) · Zbl 0968.54031
[16]Czerwik, Stefan; Dlutek, Krzysztof; Singh, S. L.: Round-off stability of iteration procedures for set-valued operators in b-metric spaces, J. natur. Phys. sci. 15, No. 1–2, 1-8 (2001) · Zbl 1034.47018
[17]Istraţescu, Vasile I.: Fixed point theory; an introduction, (1981)
[18]Matkowski, J.; Singh, S. L.: Round-off stability of functional iterations on product spaces, Indian J. Math. 39, No. 3, 275-286 (1997) · Zbl 0916.65059
[19]Rus, Ioan A.; Petrusel, A.; Petrusel, G.: Fixed point theory 1950-2000: romanian contribution, (2002) · Zbl 1005.54037
[20]Singh, S. L.; Bhatnagar, Charu; Mishra, S. N.: Stability of iterative procedures for multivalued maps in metric spaces, Demonstratio. math. 38, No. 4, 905-916 (2005) · Zbl 1100.47056
[21]Czerwik, Stefan: Nonlinear set-valued contraction mappings in b-metric spaces, Atti sem. Mat. fis. Univ. modena 46, No. 2, 263-276 (1998) · Zbl 0920.47050
[22]Rhoades, B. E.: A comparison of various definitions of contractive mappings, Trans. amer. Math. soc. 226, 257-290 (1977) · Zbl 0365.54023 · doi:10.2307/1997954
[23]Singh, S. L.; Mishra, S. N.: On general hybrid contractions, J. austral. Math. soc. Ser. A 66, 244-254 (1999) · Zbl 0931.47046
[24]Singh, S. L.; Mishra, S. N.: Remarks on recent fixed point theorems and applications to integral equations, Demonstratio. math. 34, No. 4, 847-857 (2001) · Zbl 1006.47045
[25]Singh, S. L.; Chadha, V.; Mishra, S. N.: Remarks on recent fixed point theorems for compatible maps, Int. J. Math. math. Sci. 19, No. 4, 801-804 (1996) · Zbl 0868.54036 · doi:10.1155/S0161171296001111
[26]Singh, S. L.; Tomar, Anita: Weaker forms of commuting maps and existence of fixed points, J. Korea soc. Math. educ. Ser. B pure appl. Math. 10, No. 3, 145-161 (2003) · Zbl 1203.54048
[27]Singh, S. L.; Mishra, S. N.: Coincidences and fixed points of nonself hybrid contractions, J. math. Anal. appl. 256, No. 2, 486-497 (2001) · Zbl 0985.47046 · doi:10.1006/jmaa.2000.7301