zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Homotopy perturbation method for solving sixth-order boundary value problems. (English) Zbl 1142.65386
Summary: We apply the homotopy perturbation method for solving the sixth-order boundary value problems by reformulating them as an equivalent system of integral equations. This equivalent formulation is obtained by using a suitable transformation. The analytical results of the integral equations have been obtained in terms of convergent series with easily computable components. Several examples are given to illustrate the efficiency and implementation of the homotopy perturbation method. Comparisons are made to confirm the reliability of the homotopy perturbation method. We have also considered an example where the homotopy perturbation method is not reliable.
MSC:
65L10Boundary value problems for ODE (numerical methods)
References:
[1]He, J. H.: Some asymptotic methods for strongly nonlinear equation, Int. J. Nod. phys. 20, 1144-1199 (2006) · Zbl 1102.34039 · doi:10.1142/S0217979206033796
[2]He, J. H.: Homotopy perturbation technique, Comput. math. Appl. mech. Energy, 178-257 (1999)
[3]He, J. H.: Homotopy perturbation method for solving boundary value problems, Phys. lett. A 350, 87-88 (2006) · Zbl 1195.65207 · doi:10.1016/j.physleta.2005.10.005
[4]He, J. H.: Comparison of homotopy perturbation method and homtopy analysis method, Appl. math. Comput. 156, 527-539 (2004) · Zbl 1062.65074 · doi:10.1016/j.amc.2003.08.008
[5]He, J. H.: Homotopy perturbation method for bifurcation of nonlinear problems, Int. J. Nonlinear sci. Numer. simul. 6, 207-208 (2005)
[6]He, J. H.: The homotopy perturbation method for nonlinear oscillators with discontinuities, Appl. math. Comput. 151, 287-292 (2004) · Zbl 1039.65052 · doi:10.1016/S0096-3003(03)00341-2
[7]He, J. H.: A coupling method of homotopy technique and perturbation technique for nonlinear problems, Int. J. Nonlinear mech. 35, No. 1, 115-123 (2000) · Zbl 1068.74618 · doi:10.1016/S0020-7462(98)00085-7
[8]Liao, S. J.: An approximate solution technique not depending on small parameter: A special example, Int. J. Nonlinear mech. 30, 371-380 (1995) · Zbl 0837.76073 · doi:10.1016/0020-7462(94)00054-E
[9]Liao, S. J.: Boundary element method for general nonlinear differential operators, Eng. anal. Boundary elem. 20, 91-99 (1997)
[10]Mohyud-Din, S. T.; Noor, M. A.: Homotopy perturbation method for solving fourth order boundary value problems, Math. probl. Eng. (2007) · Zbl 1144.65311 · doi:10.1155/2007/98602
[11]Nayfeh, A. H.: Introduction to perturbation techniques, (1981) · Zbl 0449.34001
[12]Noor, M. A.; Mohyud-Din, S. T.: Homotopy method for solving eighth order boundary value problem, J. math. Anal. appl. Theory 1, 161-169 (2006) · Zbl 1204.65086
[13]Noor, M. A.; Mohyud-Din, S. T.: An efficient algorithm for solving fifth order boundary value problems, Math. comput. Modelling 45, 954-964 (2007) · Zbl 1133.65052 · doi:10.1016/j.mcm.2006.09.004
[14]J.H. He, Non-perturbative methods for strongly nonlinear problems, Berlin: Dissertation. Deverlag Internet GmbH (2006)
[15]Wazwaz, A. M.: The numerical solution of sixth order boundary value problems by the modified decomposition method, Appl. math. Comput. 118, 311-325 (2001) · Zbl 1023.65074 · doi:10.1016/S0096-3003(99)00224-6
[16]He, J. H.: Variational iteration method- a kind of non-linear analytical technique: some examples, Int. J. Nonlinear mech. 34, 699-708 (1999)
[17]He, J. H.: Variational iteration method for autonomous ordinary differential systems, Appl. math. Comput. 114, 115-123 (2000) · Zbl 1027.34009 · doi:10.1016/S0096-3003(99)00104-6
[18]He, J. H.: Generalized variational principles in fluids, (2003)
[19]He, J. H.; Wu, X. H.: Construction of solitary solution and compacton-like solution by variational iteration method, Chaos solitons fractals 29, 108-113 (2006) · Zbl 1147.35338 · doi:10.1016/j.chaos.2005.10.100
[20]He, J. H.: Variational approach to the sixth order boundary value problems, Appl. math. Comput. 143, 537-538 (2003) · Zbl 1025.65043 · doi:10.1016/S0096-3003(02)00381-8
[21]He, J. H.: Approximate solution for nonlinear differential equations convolution product non-linearities, Comput. meth. Appl. mech. Eng. 167, 69-73 (1998) · Zbl 0932.65143 · doi:10.1016/S0045-7825(98)00109-1
[22]He, J. H.: Variational iteration method: A kind of nonlinear analytical technique: some examples, Int. J. Non-linear mech. 34 J, 699-708 (1999)
[23]Noor, M. A.; Mohyud-Din, S. T.: Variational iteration technique for solving higher order boundary value problems, Appl. math. Comput. 189, 1929-1942 (2007) · Zbl 1122.65374 · doi:10.1016/j.amc.2006.12.071
[24]Noor, M. A.; Mohyud-Din, S. T.: An efficient method for fourth order boundary value problems, Comput. math. Appl. 54, 1101-1111 (2007) · Zbl 1141.65375 · doi:10.1016/j.camwa.2006.12.057
[25]M.A. Noor, S.T. Mohyud-Din, Variational iteration method for solving sixth order boundary value problems, pre-print (2007)
[26]Abbasbandy, S.: A numerical solution of Blasius equation by Adomian’s decomposition method and comparison with homotopy perturbation method, Chaos solitons fractals 31, 257-260 (2007)
[27]Abbasbandy, A.: Application of he’s homotopy perturbation method for Laplace transform, Chaos solitons fractals 30, 1206-1212 (2006) · Zbl 1142.65417 · doi:10.1016/j.chaos.2005.08.178
[28]Baldwin, P.: Asymptotic estimates of the eigen values of a sixth-order boundary-value problem obtained by using global phase-integral methods, Phil. trans. Roy. soc. London A 322, 281-305 (1987) · Zbl 0625.76043 · doi:10.1098/rsta.1987.0051
[29]Baldwin, P.: A localized instability in a Bénard layer, Appl. anal. 24, 1127-1156 (1987)
[30]Boutayeb, A.; Twizell, E. H.: Numerical methods for the solution of special sixth-order boundary value problems, Int. J. Comput. math. 45, 207-233 (1992) · Zbl 0773.65055 · doi:10.1080/00207169208804130
[31]Siddiqi, S. S.; Twizell, E. H.: Spline solutions of linear sixth-order boundary value problems, Int. J. Comput. math. 60, 295-304 (1996) · Zbl 1001.65523 · doi:10.1080/00207169608804493
[32]Toomore, J.; Zahn, J. P.; Latour, J.; Spiegel, E. A.: Stellar convection theory II: Single-mode study of the secong convection zone in A-type stars, Astrophys. J. 207, 545-563 (1976)
[33]Twizell, E. H.; Boutayeb, A.: Numerical methods for the solution of special and general sixth-order boundary value problems, with applications to Bénard layer eigen value problem, Proc. roy. Soc. London A 431, 433-450 (1990) · Zbl 0722.65042 · doi:10.1098/rspa.1990.0142
[34]Twizell, E. H.: Numerical methods for sixth-order boundary value problems, International series of numer. Math. 86, 495-506 (1988) · Zbl 0657.65105
[35]Glatzmaier, G. A.: Numerical simulations of stellar convection dynamics at the base of the convection zone, geophys, Fluid dynam. 31, 137-150 (1985)
[36]Agarwal, R. P.: Boundary value problems for higher order differential equations, (1986) · Zbl 0623.34019
[37]Akram, G.; Siddiqi, S. S.: Solution of sixth order boundary value problems using non-polynomial spline technique, Appl. math. Comput. 181, 708-720 (2006) · Zbl 1155.65361 · doi:10.1016/j.amc.2006.01.053
[38]Chandrasekhar, S.: Hydrodynamics and hydromagntic stability, (1981)
[39]Chawla, M. M.; Katti, C. P.: Finite difference methods for two-point boundary-value problems involving higher order differential equations, Bit 19, 27-33 (1979) · Zbl 0401.65053 · doi:10.1007/BF01931218
[40]He, J. H.: Variational approach to the sixth order boundary value problems, Appl. math. Comput. 143, 235-236 (2003) · Zbl 1025.65043 · doi:10.1016/S0096-3003(02)00381-8
[41]Gamel, M. E.; Cannon, J. R.; Zayed, A. I.: Sinc–Galerkin method for solving linear sixth order boundary value problems, Appl. math. Comput. 73, 1325-1343 (2003) · Zbl 1054.65085 · doi:10.1090/S0025-5718-03-01587-4
[42]Cveticanin, L.: Homotopy-perturbation method for pure nonlinear differential equation, Chaos solitons fractals 30, 1221-1230 (2006) · Zbl 1142.65418 · doi:10.1016/j.chaos.2005.08.180
[43]El-Shahed, M.: Application of he’s homotopy perturbation method of Volterra’s integro-differential equation, Int. J. Nonin. sci. Numer. simul. 6, 163-168 (2005)
[44]Rafei, M.; Ganji, D. D.: Explicit solutions of helmohltz equation and fifth-order KdV equation using homotopy perturbation method, Int. J. Nonin. sci. Numer. simul. 7, 321-328 (2006)