zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Validity domain of the Benney equation including the Marangoni effect for closed and open flows. (English) Zbl 1142.76380
Summary: The Benney equation including thermocapillary effects is considered to study a liquid film flowing down a homogeneously heated inclined wall. The link between the finite-time blow-up of the Benney equation and the absence of the one-hump travelling-wave solution of the associated dynamical system is accurately demonstrated in the whole range of linearly unstable wavenumbers. Then the blow-up boundary is tracked in the whole space of parameters accounting for flow rate, surface tension, inclination and thermocapillarity. In particular, the latter two effects can strongly reduce the validity range of the Benney equation. It is also shown that the subcritical bifurcation found for falling films with the Benney equation is related to the blow-up of solutions and is unphysical in all cases, even with the thermocapillary effect though in contrast to horizontally heated films. The accuracy of bounded solutions of the Benney equation is determined by comparison with a reference weighted integral boundary layer model. A distinction is made between closed and open flow conditions, when calculating travelling-wave solutions; the former corresponds to the conservation of mass and the latter to the conservation of flow rate. The open flow condition matches experimental conditions more closely and is explored for the first time through the associated dynamical system. It yields bounded solutions for larger Reynolds numbers than the closed flow condition. Finally, solutions that are conditionally bounded are found to be unstable to disturbances of larger periodicity. In this case, coalescence is the pathway yielding finite-time blow-up.
76E17Interfacial stability and instability (fluid dynamics)
76A20Thin fluid films (fluid mechanics)