zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Pricing options under jump diffusion processes with fitted finite volume method. (English) Zbl 1142.91576
Summary: This paper develops a numerical method for a partial integro-differential equation and a partial integro-differential complementarity problem arising from European and American options valuations respectively when the underlying assets are driven by a jump diffusion process. The method is based on a fitted finite volume scheme for the spatial discretization and the Crank-Nicolson scheme for the time discretization. The fully discretized system is solved by an iterative method coupled with an FFT for the evaluation of the discretized integral term, while the constraint in the American option model is imposed by adding a penalty term to the original partial integro-differential complementarity problem. We show that the system matrix of the discretized system is an M-matrix and propose an algorithm for solving the discretized system. Numerical experiments are implemented to show the efficiency and robustness of this method.
91B28Finance etc. (MSC2000)
60J60Diffusion processes
60J75Jump processes
60H15Stochastic partial differential equations
91B24Price theory and market structure