zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Martingale approach to stochastic differential games of control and stopping. (English) Zbl 1142.93040
Summary: We develop a martingale approach for studying continuous-time stochastic differential games of control and stopping, in a non-Markovian framework and with the control affecting only the drift term of the state-process. Under appropriate conditions, we show that the game has a value and construct a saddle pair of optimal control and stopping strategies. Crucial in this construction is a characterization of saddle pairs in terms of pathwise and martingale properties of suitable quantities.
MSC:
93E20Optimal stochastic control (systems)
60G40Stopping times; optimal stopping problems; gambling theory
91A15Stochastic games
91A25Dynamic games
60G44Martingales with continuous parameter
49K45Optimal stochastic control (optimality conditions)