zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
BAM-type Cohen-Grossberg neural networks with time delays. (English) Zbl 1143.34048
Summary: We investigate bidirectional associative memory Cohen-Grossberg neural networks with time delays. By applying the Young inequality technique, Dini derivative, and introducing many real parameters, a series of new and useful criteria on the existence and uniqueness of an equilibrium point and its global asymptotical stability are established. It is shown that in some special cases of the results, the stability criteria can be easily checked. Finally, an example is given to illustrate the result obtained in this paper.
MSC:
34K20Stability theory of functional-differential equations
92B20General theory of neural networks (mathematical biology)
References:
[1]Arik, S.; Tavsanoglu, V.: On the global asymptotic stability of delayed cellular neural networks, IEEE trans. Circuits syst. I 47, 571-574 (2000) · Zbl 0997.90095 · doi:10.1109/81.841859
[2]Arik, S.: Global asymptotic stability of bidirectional associative memory neural networks with time delays, IEEE trans. Neural networks 16, No. 3, 580-586 (2005)
[3]Cao, J.: New results concerning exponential stability and periodic solutions of delayed cellular neural networks, Phys. lett. A 307, 136-147 (2003) · Zbl 1006.68107 · doi:10.1016/S0375-9601(02)01720-6
[4]Cao, J.; Li, X.: Stability in delayed Cohen–Grossberg neural networks: LMI optimization approach, Physica D 212, 54-65 (2005) · Zbl 1097.34053 · doi:10.1016/j.physd.2005.09.005
[5]Cao, J.; Wang, J.: Global asymptotic stability of a general class of recurrent neural networks with time-varying delays, IEEE trans. Circuits syst. I 50, 34-44 (2003)
[6]Cao, J.; Liang, J.: Boundedness and stability for Cohen–Grossberg neural networks with time-varying delays, J. math. Anal. appl. 296, 665-685 (2004) · Zbl 1044.92001 · doi:10.1016/j.jmaa.2004.04.039
[7]Chua, L. O.; Yang, L.: Cellular neural networks: theory, IEEE trans. Circuits syst. 35, 1257-1272 (1988) · Zbl 0663.94022 · doi:10.1109/31.7600
[8]Chua, L. O.; Yang, L.: Cellular neural networks: applications, IEEE trans. Circuits syst. 35, 1273-1290 (1988)
[9]Chen, T.; Rong, L.: Delay independent stability analysis of Cohen–Grossberg neural networks, Phys. lett. A 317, 436-449 (2003) · Zbl 1030.92002 · doi:10.1016/j.physleta.2003.08.066
[10]Cohen, M.; Grossberg, S.: Absolute stability and global pattern formation and parallel memory storage by competitive neural networks, IEEE trans. Syst. man cybern. 13, 815-826 (1983) · Zbl 0553.92009
[11]Effati, S.; Nazemi, A.: Neural networks and its application for solving linear and quadratic programming problems, Appl. math. Comput. 172, No. 1, 305-331 (2006) · Zbl 1093.65059 · doi:10.1016/j.amc.2005.02.005
[12]Feng, C.; Plamondon, R.: Stability analysis of bidirectional associative memory networks with time delays, IEEE trans. Neural networks. 14, No. 6, 1560-1565 (2003)
[13]Forti, M.; Tesi, A.: New conditions for global stability of neural networks with application to linear and quadratic programming problems, IEEE trans. Circuits syst. I 42, 354-366 (1995) · Zbl 0849.68105 · doi:10.1109/81.401145
[14]Gopalsamy, K.; He, X.: Delay-independent stability in bidrectional associative memories networks, IEEE trans. Neural networks 5, 998-1002 (1994)
[15]Hopfield, J. J.: Neurons with graded response have collective computational properties like those of two-stage neurons, Proc. natl. Acad. sci.-biol. 81, 3088-3092 (1984)
[16]Hwang, C.; Cheng, C.; Li, T.: Globally exponential stability of generalized Cohen–Grossberg neural networks with delays, Phys. lett. A 319, 157-166 (2003) · Zbl 1073.82597 · doi:10.1016/j.physleta.2003.10.002
[17]Hardy, G.; Littlewood, H.; Polya, G.: Inequality, (1934) · Zbl 0010.10703
[18]Jiang, H.; Li, Z.; Teng, Z.: Boundedness and stability for nonautonomous cellular neural networks with delay, Phys. lett. A 306, 313-325 (2003) · Zbl 1006.68059 · doi:10.1016/S0375-9601(02)01608-0
[19]Kosko, B.: Neural networks and fuzzy systems–A dynamical system approach machine intelligence, (1992) · Zbl 0755.94024
[20]Kosko, B.: Bidrectional associative memories, IEEE trans. Syst. man cybern. 18, 49-60 (1988)
[21]Li, Y.: Existence and stability of periodic solutions for Cohen–Grossberg neural networks with multiple delays, Chaos solitons fractals 20, 459-466 (2004) · Zbl 1048.34118 · doi:10.1016/S0960-0779(03)00406-5
[22]Liang, X.; Wang, J.: Absolute exponential stability of neural networks with a general class of activation functions, IEEE trans. Circuits syst. I 47, 1258-1263 (2000) · Zbl 1079.68592 · doi:10.1109/81.873882
[23]Liao, X.; Chen, G.; Sanchez, E.: Delay-dependent exponential stability analysis of delayed neural networks: an LMI approach, Neural networks 15, 855-866 (2002)
[24]Liao, X.; Li, C.; Wong, K.: Criteria for exponential stability of Cohen–Grossberg neural networks, Neural networks 17, 1401-1414 (2004) · Zbl 1073.68073 · doi:10.1016/j.neunet.2004.08.007
[25]Lu, W.; Chen, T.: New conditions on global stability of Cohen–Grossberg neural networks, Neural comput. 15, 1173-1189 (2003) · Zbl 1086.68573 · doi:10.1162/089976603765202703
[26]Marcus, C.; Westervelt, R.: Stability of analog neural networks with delay, Phys. rev. A 39, 347-359 (1989)
[27]Michel, A.; Farrell, J. A.; Porod, W.: Qualitative analysis of neural networks, IEEE trans. Circuits syst. 36, 229-243 (1989) · Zbl 0672.94015 · doi:10.1109/31.20200
[28]Wang, L.; Zou, X.: Harmless delays in Cohen–Grossberg neural networks, Physica D 170, 163-173 (2002) · Zbl 1025.92002 · doi:10.1016/S0167-2789(02)00544-4
[29]Wang, L.: Stability of Cohen–Grossberg neural networks with distributed delays, Appl. math. Comput. 160, 93-110 (2005) · Zbl 1069.34113 · doi:10.1016/j.amc.2003.09.014
[30]Xia, Y.; Wang, J.: A recurrent neural network for solving nonlinear convex programs subject to linear constraints, IEEE trans. Neural networks 16, No. 2, 379-386 (2005)
[31]Ye, H.; Michel, A. N.; Wang, K.: Qualitative analysis of Cohen–Grossberg neural networks with multiple delays, Phys. rev. E 51, 2611-2618 (1995)