zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The extended hyperbolic functions method and new exact solutions to the Zakharov equations. (English) Zbl 1143.65083
Summary: The multiple exact solutions for the nonlinear evolution equations describing the interaction of laser-plasma are developed. The extended hyperbolic function method are employed to reveal these new solutions. The solutions include that of the solitary wave solutions of bell-type for n and E, the solitary wave solutions of kink-type for E and bell-type for n, the solitary wave solutions of a compound of the bell-type and the kink-type for n and E, the singular traveling wave solutions, periodic traveling wave solutions of triangle function types, and solitary wave solutions of rational function types. In addition to re-deriving all known solutions in a systematic way, several new and more general solutions can be obtained by using our method.
MSC:
65M70Spectral, collocation and related methods (IVP of PDE)
35Q53KdV-like (Korteweg-de Vries) equations
Software:
RAEEM