zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Adaptive unstructured grid generation for engineering computation of aerodynamic flows. (English) Zbl 1143.76041
Summary: A unified framework is presented for automatic unstructured grid generation and grid flow adaptation. The method can simultaneously refine and coarsen the grid cells, a capability that is heavily required in transient flow problems. The proposed method includes a Cartesian grid generation approach in the first stage that enables an automatic field discretization without need to explicitly define the surface grid. The Cartesian grid cells are then subdivided in such a way that prevents the existence of hanging nodes. This allows the application of efficient fully unstructured flow solvers. The capabilities of the method are demonstrated by flow computation around a maneuver wing-flap geometry (SKF 1.1) at transonic flow conditions. An explicit finite volume cell-centered scheme is used for numerical solution of compressible inviscid flow equations. Results show the efficiency and applicability of the method.
MSC:
76M12Finite volume methods (fluid mechanics)
76H05Transonic flows
References:
[1]Bonet, J.; Peraire, J.: An alternating digital tree (ADT) algorithm for 3D geometric searching and intersection problems, Int. J. Num. methods eng., 1-17 (1991) · Zbl 0825.73958 · doi:10.1002/nme.1620310102
[2]Coirier, W. J.; Powell, K. G.: Solution-adaptive Cartesian cell approach for viscous and inviscid flows, Aiaa j. 34, No. 5, 938-945 (1996) · Zbl 0900.76407 · doi:10.2514/3.13171
[3]Greaves, D. M.; Borthwick, A. G. L.: Hierarchical tree-based finite element mesh generation, Int. J. Num. methods eng. 45, 447-471 (1999) · Zbl 0947.76050 · doi:10.1002/(SICI)1097-0207(19990610)45:4<447::AID-NME592>3.0.CO;2-#
[4]Jahangirian, A.; Johnston, L. J.; Morton, V. K.; Baines, M.: Unstructured grid generation and flow adaptation for external aerodynamic flows, numerical methods for fluid dynamics, (1995) · Zbl 0925.76435
[5]A. Jameson, T. J. Baker, Multigrid Solution of the Euler Equations for Aircraft Configurations, AIAA Paper 84 – 0093 (1984).
[6]Jameson, A.; Mavriplis, D.: Finite volume solution of the two-dimensional Euler equations on a regular triangular mesh, Aiaa j. 24, No. 4, 611-618 (1986) · Zbl 0589.76080 · doi:10.2514/3.9315
[7]Lo, S. H.: A new mesh generation scheme for arbitrary planar domains, Int. J. Num. methods eng. 21, 1403-1426 (1985) · Zbl 0587.65081 · doi:10.1002/nme.1620210805
[8]Smith, R. J.; Johnston, L. J.: Automatic grid generation and flow solution for complex geometries, Aiaa j. 34, No. 6, 1120-1124 (1996) · Zbl 0894.76069 · doi:10.2514/3.13201
[9]E. Stanewsky, J.J. Thibert, Airfoil SKF 1.1 with maneuver flap, AGARD AR 138 (1979) A5 – 1 to A5 – 29.
[10]J.L. Thomas, M.D. Salas, Far-field Boundary Conditions for Transonic Lifting Solution to the Euler Equations, AIAA Paper 85 – 0020 (1985).
[11]Thompson, J. F.; Thomas, F. C.; Mastin, C. W.: Automated numerical generation of body fitted curvilinear co-ordinate system for field containing any number of arbitrary two-dimensional bodies, J. comp. Phys. 15, 299-319 (1974) · Zbl 0283.76011 · doi:10.1016/0021-9991(74)90114-4
[12]Wang, Z. J.: A quadtree-based adaptive Cartesian/quad grid flow solver for Navier – Stokes equations, Computers fluids 27, No. 4, 529-549 (1998) · Zbl 0968.76053 · doi:10.1016/S0045-7930(97)00070-4
[13]Weatherill, N. P.: A method for generating irregular computational grids in multiply connected planar domains, Int. J. Num. methods fluids 8, 181-197 (1988) · Zbl 0641.76057 · doi:10.1002/fld.1650080206
[14]Yerry, M. A.; Shephard, M. S.: Automatic three-dimensional mesh generation by the modified-octree technique, Int. J. Num. methods eng. 20, 1965-1990 (1984) · Zbl 0547.65077 · doi:10.1002/nme.1620201103
[15]Zeeuw, D. D.; Powell, K. G.: An adaptively refined Cartesian mesh solver for the Euler equations, J. comp. Phys. 104, 56-68 (1993) · Zbl 0766.76066 · doi:10.1006/jcph.1993.1007