zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Comparison of the performance of four Eulerian network flow models for strategic air traffic management. (English) Zbl 1143.90006
Summary: Four Eulerian network models are implemented to model high altitude air traffic flow. Three of the models use the framework of discrete time dynamical systems, while the fourth consists of a network of partial differential equations. The construction of these models is done using one year of air traffic data. The four models are applied to high altitude traffic for six Air Route Traffic Control Centers in the National Airspace System and surrounding airspace. Simulations are carried out for a full day of data for each of the models, to assess their predictive capabilities. The models’ predictions are compared to the recorded flight data. Several error metrics are used to characterize the relative accuracy of the models. The efficiency of the respective models is also compared in terms of computational time and memory requirements for the scenarios of interest. Control strategies are designed and implemented on similar benchmark scenarios for two of the models. They use techniques such as adjoint-based optimization, as well as mixed integer linear programming. A discussion of the four models’ structural differences explains why one model may outperform another.
MSC:
90B10Network models, deterministic (optimization)
90B20Traffic problems
90C11Mixed integer programming