zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Coarse analysis of collective motion with different communication mechanisms. (English) Zbl 1143.92043
Summary: We study the effects of a signalling constraint on an individual-based model of self-organizing group formation using a coarse analysis framework. This involves using an automated data-driven technique which defines a diffusion process on the graph of a sample dataset formed from a representative stationary simulation. The eigenvectors of the graph Laplacian are used to construct ‘diffusion-map’ coordinates which provide a geometrically meaningful low-dimensional representation of the dataset. We show that, for the parameter regime studied, the second principal eigenvector provides a sufficient representation of the dataset and use it as a coarse observable. This allows the computation of coarse bifurcation diagrams, which are used to compare the effects of the signalling constraint on the population-level behavior of the model.
MSC:
92D50Animal behavior
60J70Applications of Brownian motions and diffusion theory
94A99Communication and information
References:
[1]Camazine, S.; Deneubourg, J. L.; Franks, N. R.; Sneyd, J.; Theraulaz, G.; Bonabeau, E.: Self-organization in biological systems, (2003)
[2]Lissaman, P. B. S.; Shollenberger, C. A.: Formation flight of birds, Science 168, 1003 (1970)
[3]Partridge, B. L.: The structure and function of fish schools, Sci. am. 246, 90 (1982)
[4]Sinclair, A. R. E.; Norton-Griffiths, M.: Serengeti: dynamics of an ecosystem, (1979)
[5]B.P. Uvarov, Grasshoppers and Locusts, Imperial Bureau of Entomology, London, 1928.
[6]Martinez, D. R.; Klinghammer, E.: The behavior of the whale orcinus orca: a review of the literature, Z. tierpsychol. 27, 828 (1970)
[7]Grünbaum, D.: Schooling as a strategy for taxis in a noisy environment, Evol. ecol. 12, 503 (1998)
[8]May, R. M.: Flight formations in geese and other birds, Nature 282, 778 (1979)
[9]Wiehs, D.: Hydrodynamics of fish schooling, Nature 241, 290 (1973)
[10]Driver, P. M.; Humphries, D. A.: Protean behavior: the biology of unpredictability, (1988)
[11]Neill, S. R. S.J.; Cullen, J. M.: Experiments on whether schooling by their prey affects the hunting behavior of cephalopods and fish predators, J. zool. 172, 549 (1974)
[12]Koltes, K. H.: Temporal patterns in three-dimensional structure and activity of schools of the atlantic silverside menidia menidia, Marine biol. 78, 113 (1984)
[13]Kolpas, A.; Moehlis, J.; Kevrekidis, I. G.: Coarse-grained analysis of stochasticity-induced switching between collective motion states, Proc. natl. Acad. sci. USA 104, No. 14, 5931 (2007)
[14]Partridge, B. L.; Pitcher, T. J.: The sensory basis of fish schools: relative roles of lateral line and vision, J. comp. Physiol. 135, 315 (1980)
[15]Simpson, S. J.; Sword, G. A.; Lorch, P. D.; Couzin, I. D.: Cannibal crickets on a forced March for protein and salt, Proc. natl. Acad. sci. USA 103, No. 11, 4152 (2006)
[16]Witkin, S. R.: The importance of directional sound radiation in avian vocalization, The condor 79, No. 4, 490 (1977)
[17]Endler, J. A.: Some general comments on the evolution and design of animal communication systems, Philos. trans. R. soc. London ser. B 340, 215 (1993)
[18]Marler, P.: Animal communication signals, Science 157, 769 (1967)
[19]Eftimie, R.; De Vries, G.; Lewis, M. A.: Complex spatial group patterns result from different animal communication mechanisms, Proc. natl. Acad. sci. USA 104, No. 17, 6974 (2007) · Zbl 1156.92334 · doi:10.1073/pnas.0611483104
[20]Belkin, M.; Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation, Neural comput. 15, 1373 (2003) · Zbl 1085.68119 · doi:10.1162/089976603321780317
[21]Coifman, R. R.; Lafon, S.: Diffusion maps, Appl. comput. Harmon. anal. 21, 5 (2006) · Zbl 1095.68094 · doi:10.1016/j.acha.2006.04.006
[22]Jolliffe, I. T.: Principal component analysis, (1986)
[23]Nadler, B.; Lafon, S.; Coifman, R. R.; Kevrekidis, I. G.; Maps, Diffusion: Spectral clustering and reaction coordinates of dynamical systems, Appl. comput. Harmon. anal. 21, 113 (2006) · Zbl 1103.60069 · doi:10.1016/j.acha.2005.07.004
[24]Aoki, I.: A simulation study on the schooling mechanism in fish, Bull. jap. Soc. fish. 48, 1081 (1982)
[25]Buhl, J.; Sumpter, D. J. T.; Couzin, I. D.; Hale, J. J.; Despland, E.; Miller, E. R.; Simpson, S. J.: From disorder to order in marching locusts, Nature 312, 1402 (2006)
[26]Couzin, I. D.; Krause, J.; James, R.; Ruxton, G. D.; Franks, N. R.: Collective memory and spatial sorting in animal groups, J. theor. Biol. 218, 1 (2002)
[27]Czirók, A.; Vicsek, T.: Collective motion, Fluctuations and scaling in biology, 177 (2001)
[28]T.A. Frewen, I.D. Couzin, A. Kolpas, J. Moehlis, R. Coifman, I.G. Kevrekidis, Coarse collective dynamics of animal groups, Phys. Rev. E Submitted for publication.
[29]B. Nadler, S. Lafon, R.R. Coifman, I.G. Kevrekidis, Diffusion maps, spectral clustering and eigenfunctions of Fokker-Planck operators, in: Y.W. et al. (Ed.), Advances in Neural Information Processing Systems, vol. 18, MIT Press, Cambridge, MA, 2005, pp. 955 – 962.
[30]Erban, R.; Frewen, T. A.; Wang, X.; Elston, T. C.; Coifman, R.; Nadler, B.; Kevrekidis, I. G.: Variable-free exploration of stochastic models: a gene regulatory network example, J. chem. Phys. 126, 155103 (2007)
[31]Laing, C. R.; Frewen, T. A.; Kevrekidis, I. G.: Coarse-grained dynamics of an activity bump in a neural field model, Nonlinearity 20, No. 9, 2127 (2007) · Zbl 1125.60061 · doi:10.1088/0951-7715/20/9/007
[32]Schölkopf, B.; Smola, A.; Müller, K. R.: Nonlinear component analysis as a kernel eigenvalue problem, Neural comput. 10, 1299 (1998)
[33]Meyer, C. D.: Matrix analysis and applied linear algebra, (2000)
[34]Baker, C.: The numerical treatment of integral equations, (1977) · Zbl 0373.65060
[35]Lafon, S.; Coifman, R. R.: Geometric harmonics: a novel tool for multiscale out-of-sample extension of empirical functions, Appl. comput. Harmon. anal. 21, 31 (2006) · Zbl 1095.68095 · doi:10.1016/j.acha.2005.07.005
[36]Risken, H.: The Fokker – Planck equation: methods of solution and applications, (1996)
[37]Gardiner, C.: Handbook of stochastic methods, (2004)
[38]Parrish, J. K.; Viscido, S. V.; Grünbaum, D.: Self-organized fish schools: an examination of emergent properties, Biol. bull. 202, 296 (2002)