zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Restricted isometry properties and nonconvex compressive sensing. (English) Zbl 1143.94004
Summary: The recently emerged field known as compressive sensing has produced powerful results showing the ability to recover sparse signals from surprisingly few linear measurements, using 1 minimization. In previous work, numerical experiments showed that p minimization with 0<p<1 recovers sparse signals from fewer linear measurements than does 1 minimization. It was also shown that a weaker restricted isometry property is sufficient to guarantee perfect recovery in the p case. In this work, we generalize this result to an p variant of the restricted isometry property, and then determine how many random, Gaussian measurements are sufficient for the condition to hold with high probability. The resulting sufficient condition is met by fewer measurements for smaller p. This adds to the theoretical justification for the methods already being applied to replacing high-dose CT scans with a small number of x-rays and reducing MRI scanning time. The potential benefits extend to any application of compressive sensing.

MSC:
94A12Signal theory (characterization, reconstruction, filtering, etc.)
68U10Image processing (computing aspects)