×

Synchronizability and synchronization dynamics of weighted and unweighted scale free networks with degree mixing. (English) Zbl 1144.82352

Summary: We study the synchronizability and the synchronization dynamics of networks of nonlinear oscillators. We investigate how the synchronization of the network is influenced by some of its topological features such as variations of the power law degree distribution exponent \(\gamma\) and the degree correlation coefficient \(r\). Using an appropriate construction algorithm based on clustering the network vertices in p classes according to their degrees, we construct networks with an assigned power law distribution but changing degree correlation properties. We find that the network synchronizability improves when the network becomes disassortative, i.e. when nodes with low degree are more likely to be connected to nodes with higher degree. We consider the case of both weighed and unweighed networks. The analytical results reported in the paper are then confirmed by a set of numerical observations obtained on weighed and unweighed networks of nonlinear Rössler oscillators. Using a nonlinear optimization strategy we also show that negative degree correlation is an emerging property of networks when synchronizability is to be optimized. This suggests that negative degree correlation observed experimentally in a number of physical and biological networks might be motivated by their need to synchronize better.

MSC:

82C99 Time-dependent statistical mechanics (dynamic and nonequilibrium)
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
92B20 Neural networks for/in biological studies, artificial life and related topics
93D25 Input-output approaches in control theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] DOI: 10.1007/BF02579166 · Zbl 0661.05053 · doi:10.1007/BF02579166
[2] DOI: 10.1073/pnas.200327197 · doi:10.1073/pnas.200327197
[3] Barabasi A., Science 286 pp 509–
[4] DOI: 10.1103/PhysRevLett.89.054101 · doi:10.1103/PhysRevLett.89.054101
[5] DOI: 10.1140/epjb/e2004-00111-4 · doi:10.1140/epjb/e2004-00111-4
[6] DOI: 10.1016/j.physrep.2005.10.009 · Zbl 1371.82002 · doi:10.1016/j.physrep.2005.10.009
[7] Callaway D., Phy. Rev. E 64 pp 0419021.1–
[8] Catanzaro M., Phys. Rev. E 71 pp 027103.1–
[9] DOI: 10.1103/PhysRevLett.94.218701 · doi:10.1103/PhysRevLett.94.218701
[10] Chung F., Spectral Graph Theory (1997) · Zbl 0867.05046
[11] di Bernardo M., Int. J. Bifurcation and Chaos
[12] Erdos P., Publ. Math. Inst. Hung. Acad. Sci. A 5 pp 17–
[13] DOI: 10.1137/0515019 · Zbl 0558.34033 · doi:10.1137/0515019
[14] DOI: 10.1016/j.physa.2004.09.016 · doi:10.1016/j.physa.2004.09.016
[15] DOI: 10.1103/PhysRevLett.87.278701 · doi:10.1103/PhysRevLett.87.278701
[16] Huang D., Phys. Rev. Lett. 94 pp 138701–
[17] DOI: 10.1002/cpa.3160390504 · Zbl 0596.92011 · doi:10.1002/cpa.3160390504
[18] DOI: 10.1007/978-3-642-69689-3 · doi:10.1007/978-3-642-69689-3
[19] DOI: 10.1103/PhysRevE.72.026208 · doi:10.1103/PhysRevE.72.026208
[20] DOI: 10.1140/epjb/e2006-00051-y · doi:10.1140/epjb/e2006-00051-y
[21] DOI: 10.1109/TCSI.2004.823672 · Zbl 1374.34220 · doi:10.1109/TCSI.2004.823672
[22] DOI: 10.1137/0150098 · Zbl 0712.92006 · doi:10.1137/0150098
[23] Mohar B., J. Comb. Th. B pp 274–
[24] Mohar B., Graph Th. Combin. Appl. 2 pp 871–
[25] DOI: 10.1002/rsa.3240060204 · Zbl 0823.05050 · doi:10.1002/rsa.3240060204
[26] DOI: 10.1209/epl/i2004-10238-x · doi:10.1209/epl/i2004-10238-x
[27] DOI: 10.1016/j.physa.2004.05.033 · doi:10.1016/j.physa.2004.05.033
[28] Motter A., Europhys. Lett.
[29] DOI: 10.1103/PhysRevE.71.016116 · doi:10.1103/PhysRevE.71.016116
[30] DOI: 10.1103/PhysRevLett.89.208701 · doi:10.1103/PhysRevLett.89.208701
[31] DOI: 10.1103/PhysRevE.66.016128 · doi:10.1103/PhysRevE.66.016128
[32] DOI: 10.1103/PhysRevE.67.026126 · doi:10.1103/PhysRevE.67.026126
[33] DOI: 10.1103/PhysRevLett.91.014101 · doi:10.1103/PhysRevLett.91.014101
[34] DOI: 10.1103/PhysRevE.72.047101 · doi:10.1103/PhysRevE.72.047101
[35] DOI: 10.1103/PhysRevE.68.026112 · doi:10.1103/PhysRevE.68.026112
[36] DOI: 10.1103/PhysRevLett.86.3200 · doi:10.1103/PhysRevLett.86.3200
[37] DOI: 10.1103/PhysRevLett.80.2109 · doi:10.1103/PhysRevLett.80.2109
[38] DOI: 10.1016/j.physd.2006.09.030 · Zbl 1117.34049 · doi:10.1016/j.physd.2006.09.030
[39] DOI: 10.1038/scientificamerican1293-102 · doi:10.1038/scientificamerican1293-102
[40] DOI: 10.1038/35065725 · Zbl 1370.90052 · doi:10.1038/35065725
[41] DOI: 10.1103/PhysRevE.65.066130 · doi:10.1103/PhysRevE.65.066130
[42] DOI: 10.1142/S0218127402004802 · Zbl 1044.37561 · doi:10.1142/S0218127402004802
[43] DOI: 10.1038/30918 · Zbl 1368.05139 · doi:10.1038/30918
[44] DOI: 10.1007/978-3-662-22492-2 · doi:10.1007/978-3-662-22492-2
[45] DOI: 10.1016/j.physleta.2003.10.063 · Zbl 1029.37018 · doi:10.1016/j.physleta.2003.10.063
[46] DOI: 10.1016/j.physa.2006.04.116 · doi:10.1016/j.physa.2006.04.116
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.