zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Critical exponents for nonlinear diffusion equations with nonlinear boundary sources. (English) Zbl 1145.35333
Summary: This paper is concerned with the large time behavior of solutions to two types of nonlinear diffusion equations with nonlinear boundary sources on the exterior domain of the unit ball. We are interested in the critical global exponent q 0 and the critical Fujita exponent q c for the problems considered, and show that q 0 =q c for the multi-dimensional porous medium equation and non-Newtonian filtration equation with nonlinear boundary sources. This is quite different from the known results that q 0 <q c for the one-dimensional case.
MSC:
35B33Critical exponents (PDE)
35K60Nonlinear initial value problems for linear parabolic equations
References:
[1]Deng, K.; Fila, M.; Levine, H. A.: On critical exponents for a system of heat equations coupled in the boundary conditions, Acta math. Univ. comenian. (N.S.) 63, 169-192 (1994) · Zbl 0824.35048 · doi:emis:journals/AMUC/_vol63n2.html
[2]Deng, K.; Levine, H. A.: The role of critical exponents in blow-up theorems: the sequel, J. math. Anal. appl. 243, 85-126 (2000) · Zbl 0942.35025 · doi:10.1006/jmaa.1999.6663
[3]Dibenedetto, E.: Degenerate parabolic equations, (1993)
[4]Ferreira, R.; De Pablo, A.; Quirós, F.; Rossi, J. D.: The blow-up profile for a fast diffusion equation with a nonlinear boundary condition, Rocky mountain J. Math. 33, 123-146 (2003) · Zbl 1032.35107 · doi:10.1216/rmjm/1181069989 · doi:http://math.la.asu.edu/~rmmc/rmj/Vol33-1/CONT33-1/CONT33-1.html
[5]Fibich, G.; Ilan, B.; Schochet, S.: Critical exponents and collapse of nonlinear Schrödinger equations with anisotropic fourth-order dispersion, Nonlinearity 16, 1809-1821 (2003) · Zbl 1040.35112 · doi:10.1088/0951-7715/16/5/314
[6]Fila, M.; Levine, H. A.: On critical exponents for a semilinear parabolic system coupled in an equation and a boundary condition, J. math. Anal. appl. 204, 494-521 (1996) · Zbl 0870.35049 · doi:10.1006/jmaa.1996.0451
[7]Fujita, H.: On the blowing up of solutions of the Cauchy problem for ut=Δu+u1+α, J. fac. Sci. univ. Tokyo sect. I 13, 109-124 (1966) · Zbl 0163.34002
[8]Galaktionov, V. A.; Levine, H. A.: On critical Fujita exponents for heat equations with nonlinear flux conditions on the boundary, Israel J. Math. 94, 125-146 (1996) · Zbl 0851.35067 · doi:10.1007/BF02762700
[9]Galaktionov, V. A.; Pohozaev, S. I.: Blow-up and critical exponents for parabolic equations with non-divergent operators: dual porous medium and thin film operators, J. evol. Equ. 6, 45-69 (2006) · Zbl 1109.35015 · doi:10.1007/s00028-005-0213-z
[10]Hu, B.; Yin, H. M.: On critical exponents for the heat equation with a nonlinear boundary condition, Ann. inst. H. Poincaré anal. Non linéaire 13, 707-732 (1996) · Zbl 0908.35066 · doi:numdam:AIHPC_1996__13_6_707_0
[11]Hu, B.; Yin, H. M.: On critical exponents for the heat equation with a mixed nonlinear Dirichlet – Neumann boundary condition, J. math. Anal. appl. 209, 683-711 (1997) · Zbl 0874.35051 · doi:10.1006/jmaa.1997.5397
[12]Jin, C. H.; Yin, J. X.: Critical exponents and non-extinction for a fast diffusive polytropic filtration equation with nonlinear boundary sources, Nonlinear anal. 67, 2217-2223 (2007) · Zbl 1145.35332 · doi:10.1016/j.na.2006.08.037
[13]Kalashnikov, A. S.: Some problems of the qualitative theory of nonlinear degenerate second-order parabolic equations, Russian math. Surveys 42, 169-222 (1987) · Zbl 0642.35047 · doi:10.1070/RM1987v042n02ABEH001309
[14]Ladyženskaja, O. A.; Solonnikov, V. A.; Ural’ceva, N. N.: Linear and quasilinear equations of parabolic type, Transl. math. Monogr. 23 (1967) · Zbl 0174.15403
[15]Levine, H. A.: The role of critical exponents in blow-up theorems, SIAM rev. 32, 262-288 (1990) · Zbl 0706.35008 · doi:10.1137/1032046
[16]Levine, H. A.; Zhang, Q. S.: The critical Fujita number for a semilinear heat equation in exterior domains with homogeneous Neumann boundary values, Proc. roy. Soc. Edinburgh sect. A 130, 591-602 (2000) · Zbl 0960.35051
[17]Pang, P. Y. H.; Sun, F. Q.; Wang, M. X.: Existence and non-existence of global solutions for a higher-order semilinear parabolic system, Indiana univ. Math. J. 55, 1113-1134 (2006) · Zbl 1100.35039 · doi:10.1512/iumj.2006.55.2763
[18]Quirós, F.; Rossi, J. D.: Blow-up sets and Fujita type curves for a degenerate parabolic system with nonlinear boundary conditions, Indiana univ. Math. J. 50, 629-654 (2001) · Zbl 0994.35027 · doi:10.1512/iumj.2001.50.1828
[19]Todorova, G.; Yordanov, B.: Critical exponent for a nonlinear wave equation with damping, J. differential equations 174, 464-489 (2001) · Zbl 0994.35028 · doi:10.1006/jdeq.2000.3933
[20]Wang, C. P.; Zheng, S. N.: Critical Fujita exponents of degenerate and singular parabolic equations, Proc. roy. Soc. Edinburgh sect. A 136, 415-430 (2006) · Zbl 1104.35015 · doi:10.1017/S0308210500004637
[21]Wang, C. P.; Zheng, S. N.; Wang, Z. J.: Critical Fujita exponents for a class of quasilinear equations with homogeneous Neumann boundary data, Nonlinearity 20, 1343-1359 (2007) · Zbl 1173.35345 · doi:10.1088/0951-7715/20/6/002
[22]Wang, Z. J.; Yin, J. X.; Wang, C. P.: Critical exponents of the non-Newtonian polytropic filtration equation with nonlinear boundary condition, Appl. math. Lett. 20, 142-147 (2007) · Zbl 1107.35318 · doi:10.1016/j.aml.2006.03.008
[23]Wang, Z. J.; Yin, J. X.; Wang, C. P.; Gao, H.: Large time behavior of solutions to Newtonian filtration equation with nonlinear boundary sources, J. evol. Equ. 7, 615-648 (2007) · Zbl 1145.35041 · doi:10.1007/s00028-007-0324-9
[24]Z.J. Wang, J.X. Yin, C.P. Wang, Large time behavior of solutions to non-Newtonian filtration equation with nonlinear boundary sources, in press · Zbl 1145.35041 · doi:10.1007/s00028-007-0324-9
[25]Wu, Z. Q.; Zhao, J. N.; Yin, J. X.; Li, H. L.: Nonlinear diffusion equations, (2001)
[26]Zheng, S. N.; Song, X. F.; Jiang, Z. X.: Critical Fujita exponents for degenerate parabolic equations coupled via nonlinear boundary flux, J. math. Anal. appl. 298, 308-324 (2004) · Zbl 1078.35046 · doi:10.1016/j.jmaa.2004.05.017