zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Farkas-type results and duality for DC programs with convex constraints. (English) Zbl 1145.49016
Summary: We are interested in new versions of Farkas lemmas for systems involving convex and DC-inequalities. These versions extend well-known Farkas-type results published recently, which were used as main tools in the study of convex optimization problems. The results are used to derive several strong duality results such as: Lagrange, Fenchel-Lagrange or Toland-Fenchel-Lagrange duality for DC and convex problems. Moreover, it is shown that for this class of problems, these versions of Farkas lemma are actually equivalent to several strong duality results of Lagrange, Fenchel-Lagrange or Toland-Fenchel-Lagrange type.

MSC:
49K30Optimal solutions belonging to restricted classes
90C25Convex programming
90C26Nonconvex programming, global optimization
90C46Optimality conditions, duality
49N15Duality theory (optimization)