zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Numerical solution of coupled nonlinear Schrödinger equation by Galerkin method. (English) Zbl 1145.65075
Summary: The coupled nonlinear Schrödinger equation models several interesting physical phenomena and presents a model equation for optical fiber with linear birefringence. In this paper we derive a finite element scheme to solve this equation, we test this method for stability and accuracy, many numerical tests have been conducted. The scheme is quite accurate and describe the interaction picture clearly.
MSC:
65M60Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (IVP of PDE)
35Q55NLS-like (nonlinear Schrödinger) equations
65M12Stability and convergence of numerical methods (IVP of PDE)
35Q51Soliton-like equations
References:
[1]A. Aydin, B. Karasozen, Multi-symplectic integration of coupled nonlinear Schrödinger system with soliton solutions, Int. J. Comput. Math., in press. · Zbl 1165.65084 · doi:10.1080/00207160701713615 · doi:http://www.informaworld.com/smpp/./content~db=all~content=a794846773
[2]A. Aydin, B. Karasozen, Symplectic and multisymplectic methods for the coupled nonlinear Schrödinger equations with periodic solutions, Comput. Phys. Commun. 177 (7) (2007) 566 – 583. · Zbl 1196.65139 · doi:10.1016/j.cpc.2007.05.010
[3]J. de Frutos, J.M. Sanz-Serna, An easily implementable fourth order method for the time integration of waves problems, Report 1991/2, Universidad De Valladolid, Spain, 1991.
[4]D.F. Griffiths, A.R. Mitchell, J. Li Morris, A numerical study of the nonlinear Schrödinger equation, NA/52, University of Dundee, 1982.
[5]Ismail, M. S.; Taha, T. R.: A linearly implicit conservative scheme for the coupled nonlinear Schrödinger equation, Math. comp. Simul. 74, 302-311 (2007) · Zbl 1112.65079 · doi:10.1016/j.matcom.2006.10.020
[6]Ismail, M. S.; Alamri, S. Z.: ’Highly accurate finite difference method for coupled nonlinear Schrödinger equation, Int. J. Comput. math. 81, No. 3, 333-351 (2004) · Zbl 1058.65090 · doi:10.1080/00207160410001661339
[7]Ismail, M. S.; Taha, T. R.: Numerical simulation of coupled nonlinear Schrödinger equation, Math. comput. Simul. 56, 547-562 (2001) · Zbl 0972.78022 · doi:10.1016/S0378-4754(01)00324-X
[8]Ismail, M. S.; Taha, T.: A finite element solution for the coupled Schrödinger equation, (2000)
[9]Ismail, M. S.: Finite difference method with cubic spline for solving nonlinear Schrödinger equation, Int. J. Comput. math. 62, 101-112 (1996) · Zbl 1001.65501 · doi:10.1080/00207169608804528
[10]Menyuk, C. R.: Stability of solitons in birefringent optical fibers, J. opt. Soc. am. B 5, 392-402 (1998)
[11]Muslu, G. M.; Erbay, H. A.: Higher-order split-step Fourier schemes for the generalized nonlinear Schrödinger equation, Math. comput. Simul. 67, 581-595 (2005) · Zbl 1064.65117 · doi:10.1016/j.matcom.2004.08.002
[12]Sanz-Serna, J. M.; Verwer, J. G.: Conservative and nonconservative Schrödinger equation, IMA J. Numer. anal. 6, 25-42 (1986)
[13]Shamerdan, A. B.: The numerical treatment of the nonlinear Schrödinger equation, Comput. math. Appl. 19, 67-73 (1990) · Zbl 0702.65096 · doi:10.1016/0898-1221(90)90195-P
[14]Sheng, Q.; Khaliq, A. Q. M.; Al-Said, E. A.: Solving the generalized nonlinear Schrödinger equation via quartic spline approximation, J. comput. Phys. 166, 400-417 (2001) · Zbl 0979.65082 · doi:10.1006/jcph.2000.6668
[15]Somnnier, W. J.; Christov, C. I.: Strong coupling of Schrödinger equations conservative scheme approach, Math. comput. Simul. 69, 314-325 (2005) · Zbl 1119.65396 · doi:10.1016/j.matcom.2005.03.016
[16]N.H. Sweilam, R.F. Al-Bar, Variational iteration method for coupled nonlinear Schrödinger equations, Comput. Math. Appl., in press. · Zbl 1141.65387 · doi:10.1016/j.camwa.2006.12.068
[17]Sun, J. Q.; Gu, X. Y.; Ma, Z. Q.: Numerical study of the soliton waves of the coupled nonlinear Schrödinger system, Physica D 196, 311-328 (2004) · Zbl 1056.65083 · doi:10.1016/j.physd.2004.05.010
[18]Sun, J. Q.; Qin, M. Z.: Multi-symplectic methods for the coupled 1D nonlinear Schrödinger system, Comput. phys. Commun. 155, 221-235 (2003) · Zbl 1196.65195 · doi:10.1016/S0010-4655(03)00285-6
[19]Wadati, M.; Izuka, T.; Hisakado, M.: A coupled nonlinear schrödirnger equation and optical solitons, J. phys. Soc. jpn. 61, No. 7, 2241-2245 (1992)
[20]Wang, H.: Numerical studies on the split step finite difference method for the nonlinear Schrödinger equations, Appl. math. Comput. 170, 17-35 (2005) · Zbl 1082.65570 · doi:10.1016/j.amc.2004.10.066
[21]A.M. Wazwaz, The variational method for rational solutions for KdV, K(2,2), Burger, and Cubic Boussinesq equation, J. Comput. Appl. Math. 207 (2007) 18 – 23. · Zbl 1119.65102 · doi:10.1016/j.cam.2006.07.010
[22]A.M. Wazwaz, A study on linear and nonlinear Schrödinger equations by the variational iteration method, Chaos, Solitons amp; Fractals, in press. · Zbl 1148.35353 · doi:10.1016/j.chaos.2006.10.009
[23]Xu, Y.; Shu, C.: Local discontinuous Galerkin method for nonlinear Schrödinger equations, J. comput. Phys. 205, 72-97 (2005) · Zbl 1072.65130 · doi:10.1016/j.jcp.2004.11.001
[24]Yang, J.: Multisoliton perturbation theory for the Manakov equations and its applications to nonlinear optics, Phys. rev. E 59, No. 2, 2393-2405 (1999)