zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stabilization of low-order mixed finite elements for the Stokes equations. (English) Zbl 1145.76015
Summary: We present a new family of stabilized methods for the Stokes problem. The focus of the paper is on the lowest order velocity-pressure pairs. While not LBB compliant, their simplicity and attractive computational properties make these pairs a popular choice in engineering practice. Our stabilization approach is motivated by terms that characterize the LBB ”deficiency” of the unstable spaces. The stabilized methods are defined by using these terms to modify the saddle-point Lagrangian associated with the Stokes equations. The new stabilized methods offer a number of attractive computational properties. In contrast to other stabilization procedures, they are parameter free, do not require calculation of higher order derivatives or edge-based data structures, and always lead to symmetric linear systems. Furthermore, the new methods are unconditionally stable, achieve optimal accuracy with respect to solution regularity, and have simple and straightforward implementations. We present numerical results in two and three dimensions that showcase the excellent stability and accuracy of the new methods.

76D07Stokes and related (Oseen, etc.) flows
65N30Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (BVP of PDE)
65M12Stability and convergence of numerical methods (IVP of PDE)
76M10Finite element methods (fluid mechanics)