zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A deterministic, multi-item inventory model with supplier selection and imperfect quality. (English) Zbl 1145.90313
Summary: This paper considers the scenario of supply chain with multiple products and multiple suppliers, all of which have limited capacity. We assume that received items from suppliers are not of perfect quality. Items of imperfect quality, not necessarily defective, could be used in another inventory situation. Imperfect items are sold as a single batch, prior to receiving the next shipment, at a discounted price. The demand over a finite planning horizon is known, and an optimal procurement strategy for this multi-period horizon is to be determined. Each of products can be sourced from a set of approved suppliers, a supplier-dependent transaction cost applies for each period in which an order is placed on a supplier. A product-dependent holding cost per period applies for each product in the inventory that is carried across a period in the planning horizon. Also a maximum storage space for the buyer in each period is considered. The decision maker, the buyer, needs to decide what products to order, in what quantities, with which suppliers, and in which periods. Finally, a genetic algorithm (GA) is used to solve the model.
MSC:
90B05Inventory, storage, reservoirs
90C10Integer programming
Software:
Genocop