zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A hybrid evolutionary learning algorithm for TSK-type fuzzy model design. (English) Zbl 1145.93371
Summary: In this paper, a TSK-type Fuzzy Model (TFM) with a Hybrid Evolutionary Learning Algorithm (HELA) is proposed. The proposed HELA method combines the Compact Genetic Algorithm (CGA) and the modified variable-length genetic algorithm. Both the number of fuzzy rules and the adjustable parameters in the TFM are designed concurrently by the HELA method. In the proposed HELA method, individuals of the same length constitute the same group, and there are multiple groups in a population. Moreover, the proposed HELA adopts the CGA to carry out the elite-based reproduction strategy. The CGA represents a population as a probability distribution over the set of solutions and is operationally equivalent to the order-one behavior of the simple GA. The evolution processes of a population consist of three major operations: group reproduction using the compact genetic algorithm, variable two-part individual crossover, and variable two-part mutation. Computer simulations have demonstrated that the proposed HELA method gives a better performance than some existing methods.
93C42Fuzzy control systems
90C59Approximation methods and heuristics
68T05Learning and adaptive systems