zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An epidemic model of a vector-borne disease with direct transmission and time delay. (English) Zbl 1146.34059
Authors’ abstract: This paper considers an epidemic model of a vector-borne disease which has direct mode of transmission in addition to the vector-mediated transmission. The incidence term is assumed to be of the bilinear mass-action form. We include both a baseline ODE version of the model, and, a differential-delay model with a discrete time delay. The ODE model shows that the dynamics is completely determined by the basic reproduction number R 0 . If R 0 1, the disease-free equilibrium is globally stable and the disease dies out. If R 0 >1, a unique endemic equilibrium exists and is locally asymptotically stable in the interior of the feasible region. The delay in the differential-delay model accounts for the incubation time the vectors need to become infectious. We study the effect of that delay on the stability of the equilibria. We show that the introduction of a time delay in the host-to-vector transmission term can destabilize the system and periodic solutions can arise through Hopf bifurcation.
MSC:
34K60Qualitative investigation and simulation of models
34K18Bifurcation theory of functional differential equations
34K20Stability theory of functional-differential equations
92D30Epidemiology
References:
[1]Harrus, S.; Baneth, G.: Drivers for the emergence and re-emergence of vector-borne protozoal and bacterial diseases, Int. J. Parasitol. 35, 1309 (2005)
[2]Marfin, A. A.; Gubler, D. J.: West nile encephalitis: an emerging disease in the united states, Clin. infect. Dis. 33, 1713 (2001)
[3]Molyneux, D. H.: Patterns of change in vector-borne diseases, Ann. trop. Med. paras. 91, 827 (1997)
[4]Gubler, D. J.: Resurgent vector-borne diseases as a global health problem, Emerg. inf. Dis. 4, 442 (1998)
[5]Watson, R. T.: Environmental health implications of global climate change, J. environ. Monit. 7, 834 (2005)
[6]Khasnis, A. A.; Nettleman, M. D.: Global warming and infectious disease, Arch. med. Res. 36, 689 (2005)
[7]Sutherst, R. W.: Global change and human vulnerability to vector-borne diseases, Microbiol. rev. 17, 136 (2004)
[8]Rogers, D. J.: The dynamics of vector-transmitted diseases in human communities, Philos. trans. R. soc. Lond. ser. B 321, 513 (1988)
[9]Mckenzie, F. E.: Why model malaria?, Parasitol. today 16, 511 (2000)
[10]Rodríguez, D. J.; Torres-Sorando, L.: Models of infectious diseases in spatially heterogeneous environments, Bull. math. Biol. 63, 547 (2001)
[11]Ishikawa, H.; Ishii, A.; Nagai, N.; Ohmae, H.; Harada, M.; Suguri, S.; Leafasia, J.: A mathematical model for the transmission of plasmodium vivax malaria, Parasitol. int. 52, 81 (2003)
[12]Koella, J. C.; Antia, R.: Epidemiological models for the spread of anti-malarial resistance, Malar. J. 2 (2003)
[13]Mackinnon, M. J.: Drug resistance models for malaria, Acta trop. 94, 207 (2005)
[14]Koella, J. C.; Boete, C.: A model for the convolution of immunity and immune evasion in vector-borne diseases with implications for the epidemiology of malaria, Am. nat. 161, 698 (2003)
[15]Feng, Z.; Smith, D. L.; Mckenzie, F. E.; Levin, S. A.: Coupling ecology and evolution: malaria and the S-gene across time scales, Math. biosci. 189, 1 (2004) · Zbl 1072.92051 · doi:10.1016/j.mbs.2004.01.005
[16]Calisher, C. H.: Persistent emergence of dengue, Emerg. inf. Dis. 11, 738 (2005)
[17]Cologna, R.; Armstrong, P. M.; Rico-Hesse, R.: Selection for virulent dengue viruses occurs in human and mosquitoes, J. virol. 79, 853 (2005)
[18]Newton, E. A.; Reiter, P.: A model of the transmission of dengue fever with an evaluation of the impact of ultra-low volume (ULV) insecticide applications on dengue epidemics, Am. J. Trop. med. Hyg. 47, 709 (1992)
[19]Esteva, L.; Vargas, C.: Analysis of a dengue disease transmission model, Math. biosci. 150, 131 (1998) · Zbl 0930.92020 · doi:10.1016/S0025-5564(98)10003-2
[20]Feng, Z.; Velasco-Hernandez, J. X.: Competitive exclusion in a vector-host model for the dengue virus, J. math. Biol. 35, 523 (1997) · Zbl 0878.92025 · doi:10.1007/s002850050064
[21]Esteva, L.; Vargas, C.: A model for dengue disease with variable human population, J. math. Biol. 38, 220 (1999) · Zbl 0981.92016 · doi:10.1007/s002850050147
[22]Esteva, L.; Vargas, C.: Coexistence of different serotype of dengue virus, J. math. Biol. 46, 31 (2003) · Zbl 1015.92023 · doi:10.1007/s00285-002-0168-4
[23]Ferguson, N. M.; Donnelli, C. A.; Anderson, R. M.: Transmission dynamics and epidemiology of dengue: insights from age-stratified servo-prevalence surveys, Philos. trans. R. soc. Lond. ser. B 354, 757 (1999)
[24]Ferguson, N. M.; Anderson, R. M.; Gupta, S.: The effect of antibody-dependent enhancement on the transmission dynamics and persistence of multiple-strain pathogens, Proc. natl. Acad. sci. USA 96, 790 (1996)
[25]Kawaguchi, I.; Sasaki, A.; Boots, M.: Why are dengue virus serotype so distantly related? enhancement and limiting serotype similarity between dengue virus strains, Proc. biol. Sci. 270, 2241 (2003)
[26]Esteva, L.; Vargas, C.: Influence of vertical and mechanical transmission on the dynamics of dengue disease, Math. biosci. 167, 51 (2000) · Zbl 0970.92011 · doi:10.1016/S0025-5564(00)00024-9
[27]Pongsumpun, P.; Tang, I. M.: A realistic age structured transmission model for dengue hemorrhagic fever in Thailand, Southeast. asian J. Trop. med. Public health 32, 336 (2001)
[28]Chaturvedi, U. C.; Shrivastava, R.; Nigar, R.: Dengue vaccines: problems and prospects, Indian J. Med. res. 121, 639 (2005)
[29]Derouich, M.; Boutayeg, A.; Twizell, E. H.: A model of dengue fever, Biomed. eng. Online 2, 4 (2003)
[30]Takahashi, L. T.; Maidana, N. A.; Jr., W. C. Ferreira; Pulino, P.; Yang, H. M.: Mathematical models for the aedes aegypti dispersal dynamics: traveling waves by wing and wind, Bull. math. Biol. 67, 509 (2005)
[31]Esteva, L.; Yang, H. Mo: Mathematical model to assess the control of aedes aegypti mosquitoes by the sterile insect technique, Math. biosci. 198, 132 (2005) · Zbl 1090.92048 · doi:10.1016/j.mbs.2005.06.004
[32]Cruz-Pacheco, G.; Esteva, L.; Montaño-Hirose, J. A.; Vargas, C.: Modelling the dynamics of west nile virus, Bull. math. Biol. 67, 1157 (2005)
[33]Bowman, C.; Gumel, A. B.; Den Driessche, P. Van; Wu, J.; Zhu, H.: A mathematical model for assessing control strategies against west nile virus, Bull. math. Biol. 67, 1107 (2005)
[34]Porco, T. C.: A mathematical model of the ecology of lyme disease, IMA J. Math. appl. Med. biol. 16, 261 (1999) · Zbl 0945.92018
[35]Caraco, T.; Gardner, G.; Maniatty, W.; Deelman, E.; Szymanski, B. K.: Lyme disease: self-regulation and pathogen invasion, J. theoret. Biol. 193, 561 (1998)
[36]Gosh, M.; Pugliese, A.: Seasonal population dynamics of ticks, and its influence on infection transmission: A semi-discrete approach, Bull. math. Biol. 66, 1659 (2004)
[37]Rosa, R.; Pugliese, A.; Norman, R.; Hudson, P. J.: Thresholds for disease persistence in models for tick-borne infections including non-viraemia transmission, extended feeding and tick aggregation, J. theoret. Biol. 224, 359 (2003)
[38]Mwambi, H. G.: Ticks and tick-borne diseases in africa: A disease transmission model, IMA J. Math. appl. Med. biol. 19, 275 (2002) · Zbl 1042.92031
[39]Brownstein, J. S.; Holford, T. R.; Fish, D.: A climate-based model predicts the spatial distribution of the lyme disease vector ixodes scapularies in the united states, Environ. health perspect. 111, 1152 (2003)
[40]Takeuchi, Y.; Ma, W.; Beretta, E.: Global asymptotic properties of a delay SIR epidemic model with finite incubation times, Nonlinear anal. 42, 931 (2000) · Zbl 0967.34070 · doi:10.1016/S0362-546X(99)00138-8
[41]Inaba, H.; Sekine, H.: A mathematical model for chagas disease with infection-age-dependent infectivity, Math. biosci. 190, 39 (2004) · Zbl 1049.92033 · doi:10.1016/j.mbs.2004.02.004
[42]Thieme, H. R.: Convergence results and a poincar Bendixson trichotomy for asymptotically autonomous differential equations, J. math. Biol. 30, 755 (1992) · Zbl 0761.34039 · doi:10.1007/BF00173267
[43]Aderson, R. M.; May, R. M.: Population biology of infectious diseases: part 1, Nature 280, 361 (1979)
[44]Hethcote, H. W.: Qualitative analysis of communicable disease models, Math. biosci. 28, 335 (1976) · Zbl 0326.92017 · doi:10.1016/0025-5564(76)90132-2
[45]Diendonné, J.: Foundations of modern analysis, (1960)
[46]Lasalle, J. P.: The stability of dynamical systems, (1976)
[47]Hassard, B. D.; Azarinoff, N. D. K.; Wan, Y. H.: Theory and applications of Hopf bifurcation, (1981)
[48]Marsden, J. E.; Mccracken, M.: The Hopf bifurcation and its applications, (1976)
[49]Chow, S. N.; Hale, J. K.: Methods of bifurcation theory, (1982)